Please use this identifier to cite or link to this item:
標題: 電濕潤顯示器擋牆結構對反應時間之模擬
Response Time Simulation for Different Pixel Rib Heights of Electrowetting Display
作者: 陳照欣
Chen, Chao-Hsin
關鍵字: electrowetting display;電濕潤顯示器;CFDRC;response time;rib height;CFDRC;反應時間;擋牆高度
出版社: 精密工程學系所
引用: [1] 顧鴻壽,光電液晶平面顯示器-技術基礎及應用,第二版(2004)。 [2] Viewsonic公司官方網站。 [3] 光電技術網站,電濕潤技術在可攜式液晶顯示器應用產品效能之改善 (2007)。 [4] 收放自如可折顯示器,台灣工業技術研究院(2009) 。 [5] 維基百科,表面張力係數。 [6] 呂國弘,電濕潤顯示器多區塊圖形驅動對反應時間之影響,國立中興大學精密工程研究所(2007)。 [7] 維基百科,濕潤性。 [8] 維基百科,接觸角度。 [9] 日本NFT公司:電雙層示意圖。 [10] 謝孟諺,微液滴傳送機制之理論辯正,國立清華大學微機電系統工程研究所(2003)。 [11] 陳建興,電濕潤毛細流動態接觸角之探討與電濕潤於生物晶片與透鏡製造之應用,國立中正大學 機械工程系(2005)。 [12] Jin Lim and Seung Hee Lee, Effect of surface roughness on the fabrication of electrowetting display cells and tis electro-optic switching behavior. Surface Review and Letters, 2009, vol. 16, issue 01. [13] Roques-Carmes, Thibault Hayes, RobertA. Feenstra, B. J. Schlangen, L. J. M. Liquid behavior inside a reflective display pixel based on electrowetting, J. Appl. Phys. 95, 4389 (2004). [14] B.J. Feenstral. R.A. Hayes, “A reflective display based on electrowetting: principle amd properties”, IDRC, P.51, (2003). [15] Robert A. Hayes & B. J. Feenstra, “Video-speed electronic paper based on electrowetting”, Nature 425, 383-385 (2003). [16] Flow 3D 計算流體動力公司官方網站。 [17] David R. Emerson and Robert W. Barber. Modeling” electro-wetting phenomena in digital microfluidic systems”(2007) [18] Van Doormaal, J.P. and Raithby, G.D., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows,” Numerical Heat Transfer, Vol. 7,(1984), pp. 147-163. [19] 逢甲大學應用數學系: 網格生成系統。 [20] Hirt, C. W. and Nichols, B. D., “Volume of fluid (VOF) method for the dynamics of free boundaries,” Journal Computational Physics, Vol. 39, No. 1, (1981), pp. 201-225. [21] Pilliod, J. E., and Puckett, E. G. “Second Order Volume-of-Fluid Interface tracking algorithms.” Journal Computational Physics, Vol. 188, No. 1, (2003), pp.100-122 [22] Noh, W. F., and Woodward, P. R., “SLIC (Simple Line Interface Method)” ,In A.I. Van de Vooren and Zandbergen, P. J., editors, Vol. 59, Springer-Verlag, (1976), pp. 330-340. [23] Ling-Sheng Jang & Guo-Hua Lin & Yi-Liang Lin &Chih-Yuan Hsu & Wai-Hong Kan& Chiun-Hsun Chen, “Simulation and experiment- ation of a microfluidic device based on electrowetting on dielectric” , Biomed Microdevices (2007) 9:777–786. [24] Rafael Tadmor,Line energy, line tension and drop size,Surface Science 602 (2008) L108~L111. [25] 南台科技大學振動學講義。 [26] 維基百科,阻尼。 [27] RC Circuit Decay ,Saddleback College Physics Department (2007).
本文主要研究電濕潤顯示器(Electrowetting Display)油水系統中,施加電壓情況下畫素中不同的側壁擋牆高度(rib height)在不同的油墨厚度收縮與回復情形以及對反應時間(response time)的影響。本實驗使用計算流體動力(CFDRC)軟體進行數值模擬計算電濕潤顯示器,並建立三維網格進行數值模擬電濕潤顯示器驅加電壓後,觀察其開口率、反應時間以及油墨收縮性與回覆性。

In this thesis we mainly study the oil/water system of electrowetting display, to observe oil retraction/spread motion and the effect of response time between different oil thicknesses and side rib heights in the pixel during applying voltage. Computational Fluid Dynamics (CFD) software is used to simulate electrowetting phenomena, which build the structure with three-dimensional grid to simulate when the pixel of electrowetting display is applied at different voltages to obtain pixel on/off switch parameters such as response time, aperture ratio, , and oil velocity in movement.

In simulation, a pixel with area size at 214μm×214μm to simulate different parameters of Teflon rib heights, oil thicknesses, applied voltages to compare the results of both simulation and test sample. The results can provide the design trend of electrowetting parameters such as oil thickness, rib height, voltage for future panel designer.
其他識別: U0005-3008201022374900
Appears in Collections:精密工程研究所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.