Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.advisorDung-An Wangen_US
dc.contributor.authorChao, Chia-Weien_US
dc.identifier.citation丁振卿,2006,國立台北科技大學綠色能源網站 王柏村,1996年,振動學,全華科技圖書股份有限公司。 王泰然,2006,壓電振動平板的能量收集與轉換,大葉大學,碩士論文。 李明鑫,2008,空氣傳輸超音波感測器之設計與製作,國立成功大學,碩士論文。 周卓明,1993,壓電力學,全華科技圖書股份有限公司。 林盈旭,2003,壓電式振動微發電機之設計與製作,國立中興大學,碩士論文。 柯宏樺,2009,流體驅動之壓電式能量產生器,國立中興大學,碩士論文。 黃建昇,2003年,結晶矽太陽電池發展近況,工業材料雜誌203期。 黃清弘,2005,PVDF壓電陣列感測器之製作、校正及應用,國立成功大學,碩士論文。 連益慶、舒貽忠,2008年11月,壓電振動能量擷取系統介紹,工業材料雜誌263期,科技圖書股份有限公司。 廖偉翔,2007,壓電換能器於低頻發電應用之設計與分析,國立成功大學,碩士論文。 蒲勢豔,2002,應用雷射細微加工於PVDF壓力感測器之製作,國立成功大學,碩士論文。 鄭世裕,2008年11月,環境能量擷取技術、潔淨能源新方向,工業材料雜誌第263期,科技圖書股份有限公司。 鄭世裕,2008年11月20日,壓電材料之發電器應用,材料世界網。 Bauer, S., Bauer, F., (2008), Piezoelectric polymers and their applications, Piezoelectricity- Evolution and Future of a Technology, Springer Series in materials science, vol. 114, pp. 160-161. Bergander, A., Driesen,W., Varidel, T, Bregust, J. M., (2003), Monolithic piezoelectric push-pull actuators for inertial drives, Proceedings of International Symposium on Micromechatronics and Human Science, pp. 309 - 316. Chapin, D.M., Fuller, C.S., Pearson, G.L., (1954), A new silicon p-n junction photocell for converting solar radiation into electrical power, Journal of Applied Physics, vol. 25, pp. 676-677. Cheng, Z.Y., Zhang, Q.M., Su, J., Tahchi, M.E., (2008), Electropolymers for mechatronics and artificial muscles, Piezoelectric and Acoustic Materials for Transducer Applications, pp. 131 - 155. Gonzalez, J. L., Moll, F., Rubio, A., (2001), A prospect on the use of piezoelectric effect to supply power to wearable electronic devices, Icmr, Akita, Japan, pp. 202-207. Fox, R.W., Kline ,S.J., (1962), Flow regime data and design methods for curved subsonic diffusers, Journal of Basic Engineering, Vol.84, pp. 303-312. Hu, J. H., Li, H. L., Chan, H. L. W., Choy, C. L., (2001), A ring-shaped piezoelectric transformer operating in the third symmetric extensional vibration mode, Sensors and Actuators A: Physical, Vol. 88, pp. 79 - 86. Kaneko, T., Ohmi, T., Ohya, N., Kawahara, N., Hattori, T., A new, (1997), compact and quick-response dynamic focusing lens, Proceedings of International Conference on Solid State Sensors and Actuators, Vol. 1, pp. 63 – 66. Koc,B., Alkoy, S., Uchino,K., (1999), A circular piezoelectric transformer with crescent shape input electrodes, Proceedings of IEEE Ultrasonics Symposium,Vol. 2, pp. 931 - 934. Kolesar, Jr. E. S., Dyson, C. S., (1995), Object imaging with a piezoelectric robotic tactile sensor, Journal of Microelectromechanical Systems, Vol. 4, pp. 87- 96. Kwon, O.-D., Yoo, J.-S., Yun, Y.-J., Lee, J.-S.,Kang, S.-H., Lin, K.-J., (2005), A research on the piezoelectric vibration actuator for mobile phone, Proceedings of nternational Symposium on Electrical Insulating Materials, Vol. 3, pp. 676 - 678. Kymissis, J., Kendall, C., Paradiso, J., Gershenfeld, N., (1998), Parasitic power harvesting in shoes, Second IEEE International Conference on Wearable Computing, pp.132-139. Lee, J.-S., Lee, Y.-H., Chai, H.-I., Yoon, M.-S., Lim, K.-J., (2001), The characteristics of new piezoelectric ballast for fluorescent T8 lamp, Proceedings of IEEE International Symposium on Industrial Electronics, Vol. 2, pp. 947 - 951. Lefeure, E., Badel, A., Richard, C., Guyomar, D., (2004), High performance piezoelectric vibration energy reclamation, Proceedings of SPIE, Vol. 5390, p.379-387. Lesieutre, G. A., Ottman, G K. and Hofmann ,H. F., (2004), Damping as a result of piezoelectric energy harvesting, Journal Of Sound And Vibration, 269, p.991-1001. Li, H. L., Hu, J. H., Chain, H. L. W., (2002), Finite element analysis on piezoelectric ring transformer, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 2, pp. 1177 - 1180. Nashif , A. D., Jones, D.I.G., J. P. Henderson, (1985), Vibration damping , A Wiley-Interscience Publication, pp.117-154. Onoda, Makihara, Kanjuro, Minesugi, Kenji, (2003), Energy-recycling semi-active method for vibration suppression with piezoelectric transducer, AIAA Paper, 2003-1869. Ottman, Geffrey K., Hofmann, Heath F., Lesieutre, George A., (2003), Optimized piezoelectric energy harvesting circuit using step-down converter in iscontinuous conduction mode, IEEE Transactions On Power Electronics,Vol. 18, No. 2, pp.696-703. Priya, S., Chen,C. T., Fye, D., Zahnd, J., (2005), Piezoelectric windmill: a novel solution to remote sensing, Japanese Journal of Applied Physics, Vol.44, No.3, pp.104-107. Ravariu, C., Ravariu, F., Rusu, A., Dobrescu, D., Dobrescu , L., Popa , C., Chiran I., (2002), A new job for the pseudo-MOS transistor: working in the pressure sensors field, Proceedings of the 9th International Conference on Electronics, Circuits and Systems, Vol. 1, pp. 215 - 218. Ramsay, Michael J., Clark, William W., (2001), Piezoelectric energy harvesting for biomems application, Proceedings of SPIE, Vol.4332, pp. 429-438. Sakalauskas, J., (1996), Introduction to renewable energy technology, Northern Melbourne Institute of TAFE / Open Training Services. Shenck, N.S. A., (1999), Demonstration of useful electric energy generation from piezoceramics in a shoe, the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the MIT. Shockley, W., (1949), The theory of p-n junction in semiconductors and p-n junction transistors, Bell System Technical Journal, Vol.28, pp.435-441. Starner, T., (1996), Human-powered wearable computing, IBM Systems Journal, Vol. 35, No 3-4, pp. 618-629. Sun, Z. Q., Sang, W. H., Zhang, H. J., (2009), Measure of pressure fluctuation in gas-liquid two-face vortex street, The 6th International Symposium on Measurement Techniques for Multiphase Flows, Journal of Physics: Conference Series 147. Taylor, G.W., Burns, J. R., Kammann,S. M.,Powers, W. B., Welsh, T. R., (2001), The energy harvesting eel: a small subsurface ocean/river power generator, IEEE Journal of Oceanic Engineering, Vol.26, No.4. Torres, E.O., Rincon-Mora, G.A. Long-lasting,(2005), Long-lasting, self-sustaining, and energy-harvesting system-in-package (SIP) wireless micro-sensor solution, International Conference on Energy, Environment and Energy-Harvesting Disasters (INCEED 2005), Charlotte, North Carolina, USA. Umeda, M., Nakamura, K., Ueha, S., (1996), Analysis of the transformation of mechanical impact energy to electrical energy using a piezoelectric vibrator, Japanese Journal Of Applied Physics, Vol. 35, Part 1, No. 5b, May, pp. 3267-3273. Sun, W. W., Zhao, J. L., Di, J. L., Wang, Q., Wang, L., (2009), Optics Express, Vol.17, pp. 20342-20348zh_TW
dc.description.abstract本文是探討卡門渦列作用驅動之壓電式能量擷取器的機構,此能量擷取器的主要動作方式系由以一穩定的重力流流入流道內,並在流道內橫置一梯形角柱體,藉由水流流過此梯形角柱體而在其後方流場引發卡門渦列作用以產生具有固定頻率之振動。 在分析模擬方面,使用國家高速網路與計算中心(NCHC)所提供的有限分析模擬軟體ABAQUS6.4進行模擬,分析振動薄膜位移量及計算出壓電薄膜輸出電壓。 在製程方面,本研究採用壓克力板組合出流道,以聚二甲基矽氧高分子(Polydimethylsiloxane, PDMS)作為振動薄膜,以偏聚二氟乙烯(Polyvinylidene fluoride, PVDF)壓電薄膜作為振動能轉換為位能之獵能元件。 在量測方面是以光纖位移計得到薄膜振幅,壓電薄膜輸出電壓是以示波器擷取卡來擷取。以壓力感測器量測其障礙物後方壓力。並將量測結果與模擬相比較,證實此概念是可行的。zh_TW
dc.description.abstractA piezoelectric energy harvester based on von Kármán vortex street is developed. The energy harvester is actuated by pressure fluctuation generated by the vortex street behind a bluff body in a water flow chamber. Finite element method was utilized to simulate the displacement of a PDMS diaphragm and the piezoelectric film. In the fabrication process, acrylic is used as the material for the fluidic channel, polydimethylsiloxane (PDMS) as material of vibration diaphragm, polyvinylidene fluoride (PVDF) as the device to convert vibration energy into electrical power. The deflection of the diaphragm, output voltage of the PVDF, pressure in the pressure chamber are measured by a laser vibrometer, an oscilloscope and a pressure sensor, respectively. The experimental results are computed with the simulation. The design concept of the energy harvester is verified by the experimental results.en_US
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii 目次 iv 表目次 vi 圖目錄 vii 第一章 緒論 1 1.1 動機 1 1.2 研究背景 1 1.3 壓電元件運用於機電能轉換的例子 4 1.4 論文架構 5 第二章 設計概念與作動原理 9 2.1 設計概念 9 2.2 作動原理 9 2.3 馮卡門渦列理論 10 2.4 壓電理論 11 2.4.1壓電材料 11 2.4.2壓電效應 11 2.4.3壓電操作模式 12 2.4.4PVDF壓電薄膜 12 第三章 模擬分析 19 3.1 有限元素分析 19 3.2 壓電薄膜電壓計算 20 第四章 實驗 27 4.1 製程 27 4.1.1材料 27 4.1.2步驟 27 4.2 實驗架構 28 4.3量測 29 4.3.1.壓力量測 29 4.3.2電壓與位移量測 29 4.4 量測結果與模擬比較 30 第五章 結論與未來展望 46 5.1 結論 46 5.2未來展望 46 參考文獻 47zh_TW
dc.subjectvon K&aacuteen_US
dc.subjectn vortex streeten_US
dc.subjectpiezoelectric filmen_US
dc.subjectenergy harvesteren_US
dc.titlePiezoelectric energy harvester based on vibration induced by the Karman Streeten_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:精密工程研究所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.