Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4276
標題: 剪力式壓電能量擷取器
A shear mode piezoelectric energy harvester
作者: 劉乃仁
Liu, Nai-Ren
關鍵字: shear mode piezoelectric energy harvester;剪力式壓電能量擷取器;flow-induced vibration;流體致動之振動
出版社: 精密工程學系所
引用: 參考文獻 林盈旭,2003年6月,壓電式振動微發電機之設計與製作,碩士論文,國立中興大學機械工程研究所。 廖偉翔,2007,壓電換能器於低頻發電應用之設計與分析,成功大學,碩士論文。 連益慶、舒貽忠,2008年11月,壓電振動能量擷取系統介紹,工業材料雜誌263期 柯宏樺,2009年7月,流體驅動之壓電式能量產生器,中興大學,碩士論文。 黃清弘,2005,PVDF,壓電陣列感測器之製作、校正及應用,成功大學,碩士論文。 鄭世裕,2008年11月,環境能量擷取技術、潔淨能源新方向,工業材料雜誌263期 鄭世裕,2008年11月20日,壓電材料之發電器應用,材料世界網。 周卓明,壓電力學,全華科技圖書股份有限公司出版,1993 王柏村,1996年,振動學,全華科技圖書股份有限公司。 王泰然,2006,壓電振動平板的能量收集與轉換,大葉大學,碩士論文。 吳朗,電子陶瓷-壓電,全欣資訊圖書,1994 Bergander, A., Driesen,W., Varidel, T, Bregust, J. -M., (2003), Monolithic piezoelectric push-pull actuators for inertial drives, Proceedings of International Symposium on Micromechatronics and Human Science, pp. 309 - 316. Fox, R.W., Kline ,S.J., (1962), Flow regime data and design methods for curved subsonic diffusers, Journal of Basic Engineering, Vol.84, pp. 303-312,. Hu, J. H., Li, H. L., Chan, H. L. W., Choy, C. L., (2001), A ring-shaped piezoelectric transformer operating in the third symmetric extensional vibration mode, Sensors and Actuators A: Physical, Vol. 88, pp. 79 - 86. Kaneko, T., Ohmi, T., Ohya, N., Kawahara, N., Hattori, T., A new, (1997), compact and quick-response dynamic focusing lens, Proceedings of International Conference on Solid State Sensors and Actuators, Vol. 1, pp. 63 – 66. Koc,B., Alkoy, S., Uchino,K., (1999), A circular piezoelectric transformer with crescent shape input electrodes, Proceedings of IEEE Ultrasonics Symposium,Vol. 2, pp. 931 - 934. Kolesar, Jr. E. S., Dyson, C. S., (1995), Object imaging with a piezoelectric robotic tactile sensor, Journal of Microelectromechanical Systems, Vol. 4, pp. 87- 96. Kwon, O.-D., Yoo, J.-S., Yun, Y.-J., Lee, J.-S.,Kang, S.-H., Lin, K.-J., (2005), A research on the piezoelectric vibration actuator for mobile phone, Proceedings of nternational Symposium on Electrical Insulating Materials, Vol. 3, pp. 676 - 678. Kymissis, J., Kendall, C., Paradiso, J., Gershenfeld, N., (1998), Parasitic power harvesting in shoes, Second IEEE International Conference on Wearable Computing, pp.132-139. Lee, J.-S., Lee, Y.-H., Chai, H.-I., Yoon, M.-S., Lim, K.-J., (2001), The characteristics of new piezoelectric ballast for fluorescent T8 lamp, Proceedings of IEEE International Symposium on Industrial Electronics, Vol. 2, pp. 947 - 951. Lefeure, E., Badel, A., Richard, C., Guyomar, D., (2004), High performance piezoelectric vibration energy reclamation, Proceedings of SPIE, Vol. 5390, p.379-387. Lesieutre, G. A., Ottman, G K. and Hofmann ,H. F., (2004), Damping as a result of piezoelectric energy harvesting, Journal Of Sound And Vibration, 269, p.991-1001. Li, H. L., Hu, J. H., Chain, H. L. W., (2002), Finite element analysis on piezoelectric ring transformer, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 2, pp. 1177 - 1180. Nashif , A. D., Jones, D.I.G., J. P. Henderson, (1985), Vibration damping , A Wiley-Interscience Publication, pp.117-154. Onoda, Makihara, Kanjuro, Minesugi, Kenji, (2003), Energy-recycling semi-active method for vibration suppression with piezoelectric transducer, AIAA Paper, 2003-1869. Priya, S., Chen,C. T., Fye, D., Zahnd, J., (2005), Piezoelectric windmill: a novel solution to remote sensing, Japanese Journal of Applied Physics, Vol.44, No.3, pp.104-107. Ravariu, C., Ravariu, F., Rusu, A., Dobrescu, D., Dobrescu , L., Popa , C., Chiran I., (2002), A new job for the pseudo-MOS transistor: working in the pressure sensors field, Proceedings of the 9th International Conference on Electronics, Circuits and Systems, Vol. 1, pp. 215 - 218. Ramsay, Michael J., Clark, William W., (2001), Piezoelectric energy harvesting for biomems application, Proceedings of SPIE, Vol.4332, pp. 429-438. Shenck, N.S. A., (1999), Demonstration of useful electric energy generation from piezoceramics in a shoe, the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the MIT. Starner, T., (1996), Human-powered wearable computing, IBM Systems Journal, Vol. 35, No 3-4, pp. 618-629. Taylor, G.W., Burns, J. R., Kammann,S. M.,Powers, W. B., Welsh, T. R., (2001), The energy harvesting eel: a small subsurface ocean/river power generator, IEEE Journal of Oceanic Engineering, Vol.26, No.4. Torresl, E.O., Rincon-Mora, G.A. Long-lasting,(2005), self-sustaining, and energy-harvesting system-in-package (SIP) wireless micro-sensor solution, International Conference on Energy, Environment and Energy-Harvesting Disasters (INCEED 2005), Charlotte, North Carolina, USA,.
摘要: 
本文探討一個收集流體致動之動能的剪力式壓電能量擷取器。此能量擷取器藉由壓電樑振動產生的壓電效應將流體能量轉換成電能,並利用有限元素分析法模擬壓電樑產生的電壓值。實驗結果顯示當壓力振幅為20.80kPa,工作頻率為45Hz時,壓電能量擷取器所輸出之開路電壓值為72-mVpp。並將模擬結果與實驗結果相比較。此外透過有限元素模型,便可研究不同的壓電樑尺寸、流體壓力和壓電樑形式對於壓電能量擷取器的電壓輸出有何影響。

A shear mode piezoelectric energy harvester for harnessing energy from flow-induced vibration is developed. It converts flow energy into electrical energy by piezoelectric conversion with oscillation of a piezoelectric beam. A finite element model is developed in order to estimate the generated voltage of the piezoelectric beam. Prototypes of the energy harvester are fabricated and tested. Experimental results show that an open circuit output voltage of 72mVpp are generated when the excitation pressure oscillates with an amplitude of 20.80 kPa and a frequency of about 45 Hz. The solution of the generated voltage based on the finite element model is compared with the experiments. Based on the finite element model, the effects of the piezoelectric beam dimensions, the fluid pressure applied to the harvester and types of piezoelectric beam on the output voltage of the harvester can be investigated.
URI: http://hdl.handle.net/11455/4276
其他識別: U0005-3108201000415900
Appears in Collections:精密工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.