Please use this identifier to cite or link to this item:
標題: 卡門渦列作用驅動之電磁式能量擷取器
Electromagnetic energy harvester based on vibration induced by the Karman Street
作者: 邱俊元
Chiu, Chun-Yuan
關鍵字: electromagnetic energy harvester;電磁式能量產生器;PDMS diaphragm;permanent magnet;solenoid;Von Karman vortex street;PDMS薄膜;永久磁鐵;螺旋線圈;馮卡門渦列
出版社: 精密工程學系所
引用: 黃玉婷、唐敏注,電磁式能量擷取發電裝置,世界材料網。 賴騰憲,2006,聲波致動式微型發電機於手機能源系統之應用,逢甲大學,碩士論文。 Beeby, S.P., Tudor, M.J., Koukharenko,E., White, N.M., O’Donnell, T., Saha, C., Kulkarni, S., Roy, S., (2005), Design and performance of a microelectromagnetic vibration-powered generator, TRANSDUCERS''05. The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Vol. 1, pp. 780 – 783, June 5-9 2005. Beeby, S. P., Tudor, M. J., White, N. M., (2006), Energy harvesting vibration sources for Microsystems application, Meas. Sci. Technol. 17 R175-95. Chang, K.-T., Ouyang, M., (2006), Rotary ultrasonic motor driven by a disk-shaped ultrasonic actuator, IEEE Transactions on Industrial Electronics, Vol. 53, pp. 831- 837, . Cullity, B.D., (1972) Introduction to magnetic materials, Addison-Wesley, Reading, MA, pp. 527. Edward M.P., (2004), Electricity and magnetism, Berkeley Physics Course, Vol. 2, 2. Eletro Mechanical System (MEMS), pp. 237-240, 2004. Glynne-Jones, P., Tudor, M. J., Beeby, S. P., White, N. M., (2004), An electromagnetic vibration-powered generator for intelligent sensor systems, Sensors and actuators A: Physical, Vol. 110, Issues 1-3, pp. 344-349, 1. Hetrick, R.E., (1989), A vibrating cantilever magnetic field sensor, Sensors and Actuators, vol. 6, pp. 197-207. Holmes, A. S., Hong, G., Pullen, K. R., (2005), Axial-flux permanent magnet machines for micropower generation, J. Microelectromech. Syst. 14. pp. 54-62. Kulah, H., Najafi, K., (2004), An electromagnetic micro power generator for low frequency environmental vibrations, 17th IEEE International Conference on Micro Li, W.J., Ho, T.C.H., Chan, G.M.H., Leong, P.H.W., Wong, H.Y., (2000), Infrared signal transmission by a laser-micromachined vibration-induced power generator, 2000 Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Vol. 1, pp. 236 - 239, 2000. Raisigel, H., Cugat, O., Delamare, J., (2006), Permanent magnet planar micro-generators”Sensors and Actuators, A 130 - 131. pp. 438-444. Roundy, S.,(2005), On effectiveness of vibration-based emergy harvesting, J. Intell. Mater. Syst. Struct.16 pp. 809-823. Sherawood, C., Yates, R.B., (1997), Development of an electromagnetic microgenerator, Electronics letters 23rd, Vol. 33, No.22. Soohoo, R. F., (1979), Magnetic thin film inductor for integrated circuit application, IEEE Trans. Magn. Vol. 15, no.6, pp. 1803-1805.. Tang,W.C., Nguyen,T.-C.H., Judy, M.W., Howe,R.T., (1990), Electrostatic combdrive of lateral polysilicon resonators, Sensora and Actuators A, 21-23, pp. 328-331. Trifon, M., Liakopoulos, W. Z., Chong, H. A., (1996), Electroplated thick coNiMnP permanent magnet arrays for micromachined magnetic device applications, IEEE. Wagner, B., Benecke,W., (1991), Microfabricated actuator with moving permanent magnet, in Proc. IEEE Microelectro-Mechanical Systems Workshop, pp. 27-32. Wagner, B., Benecke, W., Engelmann, G., Simon, J., (1992), Microactuators with moving magnets for linear, torsional, or multiaxial motion”, Sensors and Actuators A, 32, pp. 598-603. Wang, L., Yuan, F.G., (2008), Vibration energy harvesting by magnetostrictive material, Smart Material and Structures, Vol, 17, 045009 (14pp). Wang,P., Tanaka, K., Sugiyama, S., Dai,X., Zhao, X., Lin, J., (2009), A micro electromagnetic low level vibration energy harvester based on MEMS technology, Microsyst Technol, Vol, 15, pp. 941-945,. White, F.M., (2008), Fluid Mechanics sixth edition and McGraw-Hill. Williams, C.B., Yates, R.B., (1996), Analysis of a micro-electric generator for microsystems, Sensors and Actuators A: Physical, Vol. 52, Issues 1-3, pp. 8-11, March-April.

An electromagnetic energy harvester based on the von Kármán vortex street is developed. The energy harvester is actuated by pressure fluctuation generated by the vortex street behind a bluff body in a water flow channel.
Finite element method was utilized to analyze the displacement of a flexible diaphragm and a permanent magnet. The induced voltage in the coil is calculated by Ansoft Maxwell 10.0.
In the fabrication process, acrylic is used as the material for the fluidic channel, Polydimethylsiloxane (PDMS) as the material of vibration diaphragm, copper as the material of coil .
The deflection of the diaphragm, output voltage of the solenoid, pressure in the pressure chamber are measured by a fiberoptic vibrometer, an oscilloscope and a pressure sensor, respectively. The experimental results are computed with the simulation. The design concept of the energy harvester is verified by the experimental results.
其他識別: U0005-3108201001013300
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.