Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4278
DC FieldValueLanguage
dc.contributor王東安zh_TW
dc.contributorWang Dung Anen_US
dc.contributor.author阮澄心zh_TW
dc.contributor.authorNguyen, Tam Hai-Dangen_US
dc.contributor.other精密工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T06:27:26Z-
dc.date.available2014-06-06T06:27:26Z-
dc.identifierU0005-2008201310570200en_US
dc.identifier.citationChapter 1 [1] Willie D. Jones, Sound waves for brain waves, 2009 (accessed 2013) http://www.biotele.com/usstim.html [2] Aviation Research, Magnetostrictive Materials, accessed 2013 http://quest.arc.nasa.gov/aero/virtual/demo/research/youDecide/magnetoStrictive.html [3] Active Materials Laboratory - UCLA, Magnetostriction and Magnetostrictive Materials, accessed 2013 http://aml.seas.ucla.edu/research/areas/magnetostrictive/mag-composites/Magnetostriction%20and%20Magnetostrictive%20Materials.htm [4] Wikipedia, Piezoelectricity, accessed 2013 http://en.wikipedia.org/wiki/Piezoelectricity [5] Cleaning Technologies Group, Ultrasonics – Transducers – Magnetostrictive Hardware, accessed 2013 http://www.ctgclean.com/tech-blog/2012/01/ultrasonics-transducers-magnetostrictive-hardware/ [6] Cleaning Technologies Group, Ultrasonics – Transducers – Piezoelectric Hardware, accessed 2013 http://www.ctgclean.com/tech-blog/2012/01/ultrasonics-transducers-piezoelectric-hardware/ [7] Cleaning Technologies Group, Magnetostrictive versus Piezoelectric transducers for power ultrasonic applications, accessed 2013 http://www.ctgclean.com/blog/technology-library/articles/magnetostrictive-versus-piezoelectric-transducers-for-power-ultrasonic-applications/ [8] Wikipedia, Ultrasonic horn, accessed 2013 http://en.wikipedia.org/wiki/Ultrasonic_horn Chapter 2 [1] Sound waves in solids, liquids, and gases, e5.6-p85 http://www.scitechpub.com/r/samples/9781891121920.pdf [2] Special Steel Suppliers - SS41, accessed 2013 http://www.steelss.com/Carbon-steel/ss41.html [3] Dale Ensminger, Leonard J. Bond, (2012), Ultrasonics - Fundatmetals, Technologies and Applications, 3rd Edition [4] Wikipedia, Catenary, access 2013 http://en.wikipedia.org/wiki/Catenary [5] David F. Rogers, J. Alan Adams, (1990), Mathematical Elements for Computer Graphics, 2nd Edition [6] Wikipedia, Genetic algorithm, accessed 2013 http://en.wikipedia.org/wiki/Genetic_algorithm Chapter 3 [1] P. C. Pandey and H. S. Shan, H.S., Modern Machining Processes, Tata MaGraw-Hill, New York, 1980. [2] S. Charles, R. Williams and T. L. Poteat, Micromachined structures in ophthalmic microsurgery, Sensors and Actuators, A21–A23 (1990) 263–266. [3] A. Iula, S. Pallini, F. Fabrizi, R. Carotenuto, N. Lamberti and M. Pappalardo, A high frequency ultrasonic bistoury designed to reduce friction trauma in cystectomy operations, in: Proceedings of 2001 IEEE Ultrasonics Symposium, 2001, pp. 1331–1334. [4] D. Kremer, S. M. Saleh, S. R. Ghabrial and A. Moisan, The state of the art of ultrasonic machining, CIRP Annals – Manufacturing Technology, 30 (1981) 107-110. [5] S.G. Amin, M. H. M. Ahmed and H. A. Youssef, Computer-aided design of acoustic horns for ultrasonic machining using finite-element analysis. Journal of Materials Processing Technology, 55 (1995) 254-260. [6] C.-H. Lee and A. Lal, Silicon ultrasonic horns for thin film accelerated stress testing, in: Proceedings of 2001 IEEE Ultrasonics Symposium, pp. 867– 870. [7] E. Eisner, Design of sonic amplitude transformers for high magnification, The Journal of the Acoustical Society of America, 35 (1963) 1367–1377. [8] A. Bangviwat, H. K. Ponnekanti and R. D. Finch, Optimizing the performance of piezoelectric drivers that use stepped horns, The Journal of the Acoustical Society of America, 90 (1991) 1223–1229. [9] D. Sindayihebura and L. Bolle, Theoretical and experimental study of transducers aimed at low-frequency ultrasonic atomization of liquids, The Journal of the Acoustical Society of America, 103 (1998) 1442–1448. [10] B. N. Nagarkar and R. D. Finch, Sinusoidal horns, The Journal of the Acoustical Society of America 50 (1971) 23–31. [11] K. F. Graff, Wave Motion in Elastic Solids, The Clarendon Press, Oxford, 1995. [12] V. Salmon, A new family of horns, The Journal of the Acoustical Society of America, 17 (1946) 212–218. [13] O.V. Abramov, High-intensity Ultrasonics: Theory and Industrial Applications. Gordon and Breach Science Publishers, The Netherlands, 1998. [14] D. F. Rogers and J. A. Adams, Mathematical Elements for Computer Graphics, second ed., McGRAW-Hill, New York, 1990. [15] J. Woo, Y. Roh, K. Kang and S. Lee, Design and construction of an acoustic horn for high power ultrasonic transducers, in: Proceedings of 2006 IEEE Ultrasonics Symposium, pp. 1922–1925. [17] B. Fu, T. Hemsel and J. Wallaschek, Piezoelectric transducer design via multiobjective optimization, Ultrasonics, 44 (2006) e747–e752. [18] D.-A. Wang, W.-Y. Chuang, K. Hsu and H.-T. Pham, Design of a Bezier-profile horn for high displacement amplification, Ultrasonics, 51 (2011) 148-156. [19] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6 (2002) 182–197. [20] A. Cardoni, M. Lucas, M. Cartmell and F. Lim, A novel multiple blade ultrasonic cutting device, Ultrasonics, 42 (2004) 69–74. [21] G. Sinn, B. Zettl, H. Mayer and S. Stanzl-Tschegg, Ultrasonic-assisted cutting of wood, Journal of Materials Processing Technology, 170 (2005) 42-49. [22] M. Zhou, X. J. Wang, B. K. A. Ngoi and J. G. K. Gan, Brittle-ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration, Journal of Materials Processing Technology, 121 (2002) 243-251. [23] B. O''Daly, E. Morris, G. Gavin, J. O''Byrne and G. McGuinness, High-power low-frequency ultrasound: A review of tissue dissection and ablation in medicine and surgery, Journal of Materials Processing Technology, 200 (2008) 38-58. Chapter 4 [1] Wikipedia, Ultrasonic welding, accessed 2013 http://en.wikipedia.org/wiki/Ultrasonic_welding [2] Craig Freudenrich, Ph.D., How Ultrasonic Welding Works, accessed 2013 http://science.howstuffworks.com/ultrasonic-welding1.htm [3] David F. Rogers, J. Alan Adams, (1990), Mathematical Elements for Computer Graphics, 2nd Edition [4] American Society for Testing and Materials (ASTM International), D3163 - Standard test method for determining strength of adhesively bonded rigid plastic lap-shear joints in shear by tension loadingen_US
dc.identifier.urihttp://hdl.handle.net/11455/4278-
dc.description.abstract在這篇論文中,我開發了超聲波喇叭具有高排量放大。三次Bezier和開放均勻有理B-spline曲線(OURBS),分別是基於配置文件的號角。超聲波驅動的角利用縱向振動模式的號角。使用的優化方案和有限元分析的角的設計方法。由數控加工過程中的角的原型製造。建議牛角的表演已經通過實驗評估。 與設計過程的基礎上的,實驗結果吻合較好。在超聲波切割穿透力測量顯示貝塞爾喇叭的優勢。標本由喇叭OURBS焊接的熔接強度優於由傳統catenoidal的喇叭和貝塞爾角具有相同的長度和端表面直徑。zh_TW
dc.description.abstractIn this thesis, I developed ultrasonic horns with high displacement amplification. The profiles of the horn are based on cubic Bezier and open uniform rational B-spline (OURBS) curve, respectively. The ultrasonic actuations of the horns exploit the first longitudinal vibration mode of the horn. A design method of the horns using an optimization scheme and finite element analyses is developed. Prototypes of the horns are manufactured by a numerical control machining process. Performances of the proposed horns have been evaluated by experiments. The experimental results are in good agreement with those based on the design procedure. Penetration force during ultrasonic cutting is measured to show the advantage of the developed Bezier horn. The weld strength of specimens welded by OURBS horn is better than those by the traditional catenoidal horn and the Bezier horn with the same length and end surface diameters.en_US
dc.description.tableofcontentsTABLE OF CONTENTS ABSTRACT i ACKNOWLEDGEMENTS ii TABLE OF CONTENTS iii LIST OF FIGURES v LIST OF TABLES ix CHAPTER 1 INTRODUCTION 1 1.1 Generating of ultrasonic waves 2 1.2 Ultrasonic transducer 3 1.3 Ultrasonic horn 4 1.4 Purpose of this thesis 6 References 7 CHAPTER 2 THEORY AND DESIGN 13 2.1 Effect of mechanical horn shapes 13 2.1.1 Cylinder as an ultrasonic horn 13 2.1.2 Stepped horn 14 2.1.3 Conical horn 14 2.1.4 Catenoidal horn 15 2.1.5 Conclusion 16 2.2 Curves of horn profile 16 2.2.1 Bezier curve 16 2.2.2 B-spline curve 18 2.3 Genetic algorithm 20 References 21 CHAPTER 3 ULTRASONIC CUTTING 27 3.1 Introduction 27 3.2 Design 29 3.3 Analyses 31 3.3.1 Finite element model 31 3.3.2 Numerical analysis 31 3.4 Fabrication and experiments 35 3.5 Conclusion 39 References 41 CHAPTER 4 ULTRASONIC WELDING 56 4.1 Introduction 56 4.2 Design 58 4.3 Analyses 61 4.3.1 Finite element model 61 4.3.2 Numerical analysis 62 4.4 Fabrication and experiments 65 4.5 Conclusion 68 References 69 CHAPTER 5 CONCLUSIONS 87zh_TW
dc.language.isoen_USen_US
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201310570200en_US
dc.subject變幅桿的zh_TW
dc.subjectBezier hornen_US
dc.subject置換擴增zh_TW
dc.subject優化zh_TW
dc.subjectB-spline hornen_US
dc.subjectoptimizationen_US
dc.subjectultrasonic actuationen_US
dc.subjectdisplacement amplificationen_US
dc.titleBezier及OURBS變幅桿的設計及其應用zh_TW
dc.titleDesign of Bezier and OURBS horns and their applicationsen_US
dc.typeThesis and Dissertationzh_TW
item.grantfulltextrestricted-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextwith fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:精密工程研究所
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-102-7100067025-1.pdf4.34 MBAdobe PDFThis file is only available in the university internal network   
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.