Please use this identifier to cite or link to this item:
標題: 以微拉力試驗機測試 應力條件對銅-錫介金屬薄膜生成之影響
Temperature Dependent Micromechanical Testing on the Formation of Cu/Sn Intermetallic Thin Films
作者: 呂芳慶
Lu, Fang-Ching
關鍵字: 銅-錫介金屬化合物;Copper-tin intermetallic formation;銲料擴散;微機械測試;solder diffusion;micromechanical test
出版社: 精密工程學系所
引用: [1] 陳信文 , 陳立軒 , 林永森 , 陳志銘 , ”電子構裝技術與材料” ,高立圖書有限公司(2005)。 [2] E. J. Rymaszewski, R. R. Tummala, and T. Watari, Microelectronic Packaging Handbook, Part I, 2nd edition, Chapman and Hall , 1997. [3] Charles A. Harper ‘’Electronic Packaging and Interconnection Handbook’’,McGraw-Hill, 2005. [4] P. Zarrow, “On the Forefront: Lead Free: Don''t Fight a Fact, Deal with it!” Circuit Assembly, Vol. 10, pp. 18-20, 1999. [5] Mulugeta. Abtew, Guna. Selvaduray, “Lead-free solder in Microelectronics”, Material Science and Engineering, Vol.27, p.p.95-141, 2000. [6] Daniel Lu, C.P.Wong ‘’Material for Advanced packaging’’, Springer, 2009. [7] King-Ning Tu , “Solder joint technology” , Springer, 2007. [8] K. N. Tu, “Interdiffusion and reaction in bimetallic Cu-Sn thin films”, Acta Metallurgica, Vol.21, pp.347-354, 1973. [9] Z. Mei, A. J. Sunwoo, anf J. W. Morris. Jr, “Analysis of low-temperature intermetallic growth in copper-tin diffusion couples”, Metallurgical Transaction A, Vol. 23, pp. 857-864, 1992. [10] J. Gorlich, G. Schmitz, K. N. Tu, “On the mechanism of the binary Cu/Sn solder reaction”, Jounral of applied physics letters, Vol.86, pp.053106:1-3, 2005. [11] 王朝弘, “電子與熱電系統中銲點之界面反應與微結構演變”, 博士論文,國立清華大學化工所(2008)。 [12] 汪建銘,材料分析,p673-700,2005年3月。 [13] J. Y. Snog, Jin. Yu, T. Y. Lee, “Effects of reactive diffusion on stress evolution in Cu–Sn films”, Scripta Meterialia, Vol.51,p.p.167-170, 2004. [14] S.L. Ngoh, W. Zhou1, H. L. Pang1, A.C. Spowage and X.Q. Shi,’’Effect of Stress on Interfacial Intermetallic Compound Development of Sn-Ag-Cu Lead-Free Solder Joint on Au/Ni/Cu Substrate’’, Electronics Packaging Technology Conference, 2004. [15] J. Y. Huh, S. J. Moon,”Effect of elastic stresses on solid-state amorphization of Zr/Co mutilayers”, Thin Solid Films, Vol.377-378, p.p.611-616, 2000. [16] T.C. Hu, F.C. Hsu, A.W. Huang and M.T. Lin, “Influence of External Strain on the Growth of Interfacial Intermetallic Compounds Between Sn and Cu Substrates”, Journal of ELECTRONIC MATERIALS, Vol. 41, No. 12, 2012. [17] W.K. Liao, C.M. Chen, M.T. Lin and C.H. Wang, “Enhanced growth of the Ni3Sn4 phase at the Sn/Ni interface subjected to strains”, Scripta Meterialia 65:691-694, 2011. [18] M. Mita, M. Kajihara, N. Kurokawa, K. Sakamoto, Mater. Sci. Eng. A 403:269, 2005. [19] 李幸男, “銅-錫介金屬生成與外在應力關係之探討”, 碩士論文, 國立中興大學精密所, 2011. [20] T Kakeshita, K. Shimizu, R Kawanaka, et al. “Grain Size Effect of Electro-Plated Tin Coatings on Whisker Growth.” Journal of Materials Science., vol. 17, pp. 2560-2566 (1982) [21] 徐若勳, “Sn-58 wt% Bi 與Sn-0.7 wt%Cu無鉛銲料與Alloy 42基材之界面反應”, 碩士論文, 國立台灣科技大學化學工程系, 2007. [22] A. Stesmans, D. Pierreux, R J Jaccodine, M.-T. Lin, T. J. Delph, Applied Physics Letters 82 (2003) 3038. [23] M.-T. Lin, T J Delph, R J Jaccodine, Journal of Materials Research 16 (2001) 728. [24] W.J. Tomlinson and A. Fullylove, Journal of Materials Science (21) (1992) 5777. [25] M. Onishi and H. Fujibuchi, Transactions Japan Institute of Metals 16 (1975) 539. [26] V.K. Nagesh, R. Peddada, S. Ramalingam, B. Sur, and A. Taiy, Proc. IEEE Electronic Component and Technology Conference 975 (1999). [27] C.S. Chang, A. Oscilowski, and R.C. Bracken, IEEE Circuits Devices Mag. 14, 45 (1998). [28] F. Gua, J. Lee, S. Choi, J.P. Lucas, T.R. Bieler, and K.N. Subramanian, Journal Electronic Material 30, 1073 (2001). [29] D.-G. Kim, J.-W. Kim, and S.-B. Jung, Materials Science and Engineering B-Solid 121, 204 (2005) [30] C.-W. Hwang and K. Suganuma, Materials Science and Engineering A-Struct. 373, 187 (2004).
本研究在不同外加應力下(拉伸應力、壓縮應力、不受力),不同應力大小(25 MPa、50 MPa、100 MPa),不同熱處理時間(1天、3天、5天),分別探討銅-錫介金屬化合物(IMC)的生成厚度與微結構觀察,並與文獻進行討論與比較,探討應力釋放對IMC生成的影響。

A temperature controlled tensile testing was performed to investigate the influence of external stress on the growth of an interfacial Cu-Sn IMC layer. The test specimens were prepared by depositing 25 μm layers of tin atop of copper substrate using electroplating. Samples were then clamped in a micromechanical testing apparatus integrated with a furnace. Experiments were carried out using load feedback control to provide constant load on the specimens with the stress level of 25 MPa, 50 MPa and 100 MPa under constant temperature at 200C for 1 to 5 days annealing. Comparisons were made between samples undergoing stresses and those without stresses annealing. We observed the influence of stress levels and aging time on the formation of intermetallic compounds (IMC). Stress does influence the formation of Cu/Sn IMC. The thickness of IMC increased under stress. The growth rate of IMC was faster in stressed tin samples. Moreover, the formation of IMC micrographic structures under external stress differs considerably according to the level of stress.
其他識別: U0005-0908201318441600
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.