Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4287
標題: 以有限元素法分析多熱源線性馬達平台之 穩態熱傳及其結構
Analysis of Heat Transfer and Thermal Stress of Linear Motor Stage with Multi-heat Sources Using Finite Element Method
作者: 賴志豪
Lai, Chih-Hao
關鍵字: 有限元素法;Finite Element Method;熱傳導;Conduction heat transfer
出版社: 精密工程學系所
引用: 參考文獻 [1] 夏宏誌,「以熱阻模型與有限元素法分析線性同步馬達之熱傳行為」,碩士論文,國立中興大學精密工程研究所,台中市(2009)。 [2] 施傑翔,「以有限元素法對三相線性同步馬達之熱傳模擬分析」,碩士論文,國立中興大學精密工程研究所,台中市(2006)。 [3] 蘇于淵,「龍門平台之定位控制」,碩士論文,國立台灣科技大學電機工程系,台北市(2008)。 [4] 洪梓育,「龍門定位平台與線性馬達間之熱溫昇與熱應力分析研究」,碩士論文,國立中正大學機械工程研究所,高雄市(2007)。 [5] 王鎮雄,朱朝煌,李世榮,劉傳仁,蔡豐欽 譯,「熱傳遞學」,高立圖書,台北(1995)。 [6] 上銀科技股份有限公司,「線性馬達系統技術手冊」,台中市(2007)。 [7] 國立成功大學馬達研究中心,「電動機導論」,台南市。 [8] Changsoo, J., Jong Young, K., Jae Ok, K., “ Heat Transfer Analysis and Simplified Thermal Resistance Modeling of Linear Motor Driven Stages for SMT Applications, ”IEEE Transactions on Components and Packaging Technologies, vol.26, no.3, pp.532-540, 2003. [9] Faa-Jeng, L., Chin-Sheng, C., Po-Huan, C., Yu-Sheng, L., “DSP-Based Cross-Coupled Synchronous Control for Dual Linear Motors via Intelligent Complementary Sliding Mode Control, ”IEEE Transactions on Industrial Electronics, vol.59, no.2, pp.1061-1073, 2012. [10] Abbas, S., Abbas, S., “Design Optimization and Analysis of Single-Sided Linear Induction Motor, Considering All Phenomena, ”IEEE Transactions on Energy Conversion, vol.27, no.2, pp.516-525, 2012. [11] Moojong, K., Jinyoung, K., Moon G, L., “Design of Feedforward Controller to Reduce Force Ripple for Linear Motor using Halbach Magnet Array with T Shape Magnet, ”Physics Procedia 19, pp.353-356, 2011. [12] Eun, I.U., “Comparision between Asynchronous and Synchronous Linear Motor as to Thermal Bechavior”, Journal of the Korean Society of Precision Engineerin, vol.2, NO.3, pp.61-68, 2001. [13] Nirei, M., Tang, Y., T. Mizuno, H. Yamamoto, K. Shibuya and H. Yamada,“Iron loss analysis of moving-coil-type linear DC motor , ”Sensors and Actuators, vol.81, pp305-308, 2000. [14] Chunting, M., Slemon, G.R., Bonert, R., “Modeling of iron losses of permanent magnet synchronous motors, ”IEEE Transactions on Industry Applications, vol.39, pp.734-742, 2003. [15] Jian Xun Jin, Lu Hai Zheng, You Guang Guo, Jian Guo Zhu, Colin Grantham,Charles Christopher Sorrell, and Wei Xu., “High-Temperature Superconducting Linear Synchronous Motors Integrated With HTS Magnetic Levitation Components”IEEE Transactions on applied superconductivity, vol. 22, pp. 5, 2012. [16] Wenlong, L., “Design and Analysis of a Novel Linear Transverse Flux Permanent Magnet Motor, ”IEEE Transactions on Applied superconductivity, vol. 20, pp. 3, 2010. [17] Chow, J,H., Zhong , Z, W., Lina, W., Khoo , L, P., “ A study of thermal deformation in the carriage of a permanent magnet direct drive linear motor stage, ”Applied Thermal Engineering 48, pp89-96, 2012. [18] Mohammad, H., “A New Dynamical Model of Linear Induction Machines”Dynamical Model of Linear Induction Machines Electric Power Components and Systems, pp1319-1338, 2012. [19] Huang, Xuzhen., Liu, Jiaxi., Zhang, Chengming., Li Liyi, “ Calculation and Experimental Study on Temperature Rise of a High OverLoad Tubular Permanent Magnet Linear Motor,”IEEE Transactions on Plasma Science, vol. 41, no. 5, MAY 2013. [20] Jing, Li., Fei, Yen., Shijun, Zheng., Suyu, Wang., Jiasu, Wang., “Normal Force Analysis on a High Temperature Superconducting Linear Synchronous Motor,” IEEE Transactions on Applied Superconductivity, vol. 22, no. 3, JUNE 2012. [21] Luhai, Zheng., Jianxun, Jin., Yuoguang, Guo., Wei, Xu., Jianguo, Zhu., “Performance Analysis of an HTS Magnetic Suspension and Propulsion System With a Double-Sided HTS Linear Synchronous Motor,” IEEE Transactions on Magnetics, vol. 48, no. 2, FEBRUARY 2012. [22] Toshimitsu, Morizane., Kousuke, Tsujikawa., Noriyuki, Kimura., “Control of Traction and Levitation of Linear Induction Motor Driven by Power Source With Frequency Component Synchronous With the Motor Speed,” IEEE Transactions on Magnetics, vol. 47, no. 10, OCTOBER 2011.
摘要: 
摘要
過去產業所使用的馬達為傳統旋轉馬達,是屬於旋轉運動,它是需要搭配滾珠螺桿、齒輪、皮帶、導螺桿等零組件來作驅動運轉,這種傳動機構容易產生摩擦,會造成零組件損壞。近幾年來,線性馬達產品的問市,在機械工業領域進而取代傳統旋轉馬達,而線性馬達的運動不同於旋轉馬達,是屬於直線運動。線性馬達在瞬間高加速或瞬間高減速時,其銅線圈會有熱源產生,工作平台會有熱變形產生,造成產品加工精度降低,要改善線性馬達的散熱問題,其散熱機構為主要之關鍵因素,因此本論文研究目的為利用有限元素法,分析探討線性馬達的平台不同散熱設計,在相同邊界條件下,進行溫度及變形量模擬分析,依照所模擬的結果,選擇最佳散熱機構模組的線性馬達,因而可以大幅縮短開發時程。此外,本研究成功地運用ANSYS應用軟體模擬線性馬達平台的熱效應分析,可提供業界作為開發線性馬達的平台熱分析應用。

Abstract
The traditional rotary motor works with ball screws, gears, leather belts, lead screws to drive machine. It gets broken easily by friction. Linear motors were used extensively instead of traditional ones in the field of engineering industry. The characteristic of a lineal motor is linear motion. The copper coils generate heat when the linear motor accelerate or decelerate instantly. The work platform is deformed by thermal stress and the distortion will decrease the precision. The mechanism of heat dissipation is the key point to solve this problem. We analyze temperature and deformation with different designs of heat dissipation mechanism by using finite element method. From the result of simulation, the best design was obtained. Furthermore, by analyze the heat effect of the platform using ANSYS, the results of heat analysis will be contributed to industry to reduce the time of heat dissipation mechanism design of a developing linear motor.
URI: http://hdl.handle.net/11455/4287
其他識別: U0005-1508201315505200
Appears in Collections:精密工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.