Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4288
DC FieldValueLanguage
dc.contributor楊錫杭zh_TW
dc.contributorHsi-Harng Yangen_US
dc.contributor.author陳沐紘zh_TW
dc.contributor.authorChen, Mu-Hungen_US
dc.contributor.other精密工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T06:27:28Z-
dc.date.available2014-06-06T06:27:28Z-
dc.identifierU0005-0307201314574500en_US
dc.identifier.citation[1]Sali, S., Boumaour, M., Kechouane, M., Kermadi, S. and Aitamar, F., “Nanocrystalline ZnO film deposited by ultrasonic spray on textured silicon substrate as an anti-reflection coating layer,” Physica B: Condensed Matter, vol. 407, no. 13, pp. 2626-2631, 2012. [2]Nasr, G. G., Whitehead, A. and Yule, A. J., “Fine sprays for disinfection within healthcare,” International Journal of Multiphysics, vol. 6, no. 2, pp. 149-166, 2012. [3]Senevirathne, K., Neburchilov, V., Alzate, V., Baker, R., Neagu, R., Zhang, J., Campbell, S. and Ye, S., “Nb-doped TiO2/carbon composite supports symthesized by ultrasonic spray pyrolysis for proton exchange membrane (PEM) fuel cell catalysts,” Journal of Power Sources, vol. 220, pp. 1-9, 2012. [4]Devrim, Y., Erkan, S., Bac, N. and Eroglu, I., “Improvement of PEMFC performance with Nafion/inorganic nanocomposite membrane electrode assembly prepared by ultrasonic coating technique,” International Journal of Hydrogen Energy, vol. 37, no. 21, pp. 16748-16758, 2012. [5]Huang, T. H., Shen, H. L., Jao, T. C., Weng, F. B. and Su, A., “Ultra-low Pt loading for proton exchange membrane fuel cells by catalyst coating technique with ultrasonic spray coating machine,” International Journal of Hydrogen Energy, vol. 37, no. 18, pp. 13872-13879, 2012. [6]思沛雅噴霧器材有限公司http://www.sprayernozzle.com.tw [7]系統噴霧有限公司(台灣) http://www.spraytwn.com.tw [8]原子級霧化技術:超音速噴嘴簡介http://cdnet.stpi.org.tw/techroom/market/nano/nano012.htm [9]http://www.sono-tek.com/industrial [10]Dobre, M. and Bolle, L., “Practical design of ultrasonic spray devices experimental testing of several atomizer geometries,” Experimental Thermal and Fluid Science, vol. 26, no. 2-4, pp. 205-211, 2002. [11]Rodrigues, L., Passerini, N., Cavallari, C., Cini, M., Sancin, P. and Fini, “Description and preliminary evaluation of a new ultrasonicatomizer for spray-congealing processes,” Journal of Pharmaceutics, vol. 183, no. 2, pp. 133-143, 1999. [12]Munoz-Aguirre, S., Nakamoto, T. and Moriizumi, T., “Study of deposition of gas sensing films on quartz crystal microbalance using an ultrasonic atomizer,” Sensors and Actuators B: Chemical, vol. 105, no. 2, pp. 144-149, 2005. [13]Steirer, K. X., Berry, J. J., Reese, M. O., Miedaner, A., Liberatore, M. W., Collins, R. T. and Ginley, D. S., “Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells,” Thin Solid Films, vol. 517 , no. 8, pp. 2781-2786, 2009. [14]Susanna, G., Salamandra, L., Brown, T. M., Carlo, A. D., Brunetti, F. and Reale, Andrea., “Airbrush spray-coating of polymer bulk-heterojunction solar cells,” Solar Energy Materials and Solar Cells, vol. 95, no. 7, pp. 1775-1778, 2011. [15]Stewart-Clark, S. S., Lvov, Y. M. and Mills, D. K., “Ultrasonic nebulization-assisted layer-by-layer assembly for spray coating of multilayered, multicomponent, bioactive nanostructures,” Journal of Coatings Technology and Research, vol. 8, no. 2, pp. 275-281, 2011. [16]Millington, B., Whipple, V. and Pollet, B. G., “A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique,” Journal of Power Sources, vol. 196, no. 20, pp. 8500-8508, 2011. [17]Singh, V. K., Sasaki, M., Hane, K., Watanabe, Y., Takamatsu, H., Kawakita, M. and Hayashi, H., “Deposition of thin and uniform photoresist on three-dimensional structures using fast flow in spray coating,” Journal of Micromechanics and Microengineering, vol. 15, no. 12, pp. 2339-2345, 2005. [18]Roncallo, S., Painter, J. D., Cousins, M. A., Lane, D. W. and Rogers, K. D., “A method to quantify the degree of uniformity of thickness of thin films,” Thin Solid Films, vol. 516, no. 23, pp. 8493-8497, 2008. [19]Roncallo, S., Painter, J. D., Ritchie, S. A., Cousins, M. A., Finnis, M. V. and Rogers, K. D., “Evaluation of different deposition conditions on thin films deposited by electrostatic spray deposition using a uniformity test,” Thin Solid Films, vol. 518, no. 17, pp. 4821-4827, 2010. [20]Choi, D. S., Kim, D. and Jang, D. H., “Development of numerical model for predicting deposition thickness distribution during spray process for carbon nanotube thin films,” Transactions of the Korean Society of Mechanical Engineers. B, vol. 35, no. 9, pp. 969-974, 2011. [21]Forissier, S., Roussel, H., Chaudouet, P., Pereira, A., Deschanvres, J. L. and Moine, B., “Thulium and Ytterbium-doped Titanium oxide thin films deposited by ultrasonic spray pyrolysis,” Journal of Thermal Spray Technology, vol. 21, no. 6, pp. 1263-1268, 2012. [22]http://www.arc-flash.com.tw/our_tec2-5.htm [23]魏宏樺,微快速原型系統之霧化鋪層技術研究,國立台北科技大學製造科技研究所碩士論文,2004。 [24]黃啟華,快速原形機之氣霧噴印製程設計,國立成功大學機械工程研究所碩士論文,2007。 [25]林祐竹,透明自潔二氧化鈦/二氧化矽奈米粒子薄膜的表面潤濕永續性之研 究,國立成功大學化學工程研究所碩士論文,2009。 [26]李輝煌,田口方法品質設計的原理與實務,高立圖書有限公司,2000。en_US
dc.identifier.urihttp://hdl.handle.net/11455/4288-
dc.description.abstract本研究以田口法對超音波噴塗鍍膜均勻度之製程參數作最佳化的分析。在大面積均勻薄膜塗佈設備開發下,整合超音波精密塗佈關鍵模組系統,針對影響噴霧性能之關鍵參數,如噴霧高度、噴射壓力、噴嘴流量、速度以及噴塗液之黏度、表面張力和溫度等,藉由精密製程及實驗設計田口法分析,針對超音波噴塗技術建立最佳化之製程參數,以實現大面積均勻鍍膜之技術,並以單次噴塗鋪層之方式,來找出最佳的成形參數,在塗佈幅寬60cm行程下,穿透率確認實驗中,從原始設計至最佳設計,計算S/N比約提高了2.79、穿透率則達到92.02%以及穿透率均勻性可控制在0.12%以內;膜厚確認實驗中,從原始設計至最佳設計,計算S/N比約提高了7.31、膜厚則達到1.05μm以及膜厚均勻性可控制在15.49%以內。本研究透過田口方法製程參數的設計與分析,可得到二氧化矽溶膠噴塗鍍膜均勻性最佳的製程參數。zh_TW
dc.description.abstractThe study aims to analyze the fabrication parameter optimization by using Taguchi methods for ultrasonic spray coating film thickness uniformity. The experimental analysis will integrate the ultrasonic key modes for the spray machine. This study will focus on the key parameters of spray specifications such spray height, pressure, nozzle flow, speed, stickiness, surface strength and temperature. The further production process and experimental design Taguchi method analysis by using ultrasonic spray technology can build up the best solution for the production process. It enables the technology to perform large area coating and uses single spray coating to discover the best forming parameters. Under the circumstance of coating stroke 60cm, the optimal calculated S/N ratio increased about 2.79, the transmittance reached to 92.02%, and the transmittance uniformity can be controlled within 0.12% in the transmittance experiment, which was compared with the original design. Likewise, the optimal calculated S/N ratio increased about 7.31, the film thickness reached to 1.05μm and the film thickness uniformity can be controlled within 15.49% in the experiment of film thickness. Through the fabrication parameters of Taguchi method analysis, the best fabrication parameters for ultrasonic spray coating silicon dioxide film thickness uniformity was investigated.en_US
dc.description.tableofcontents摘要 i Abstract ii 目次 iii 圖目錄 v 表目錄 vii 第一章 緒論 1 1.1 前言 1 1.2 超音波噴塗原理 2 1.3 噴塗霧化技術簡介 2 1.3.1 噴嘴的種類 2 1.3.1.1 液體加壓式噴嘴(單流體噴嘴) 3 1.3.1.2 氣體輔助式噴嘴(二流體噴嘴) 3 1.3.1.3 超音波式噴嘴 4 1.3.2 噴嘴霧化的形狀 5 1.3.2.1 空心錐形 5 1.3.2.2 實心錐形 5 1.3.2.3 扇形噴霧 6 1.3.2.4 微細噴霧 7 1.3.2.5 液柱流 7 1.3.2.6 空氣霧化 7 1.3.3 噴塗霧化的相關名詞 8 1.3.3.1 噴霧粒徑 8 1.3.3.2 霧化流量分佈 9 1.3.3.3 影響噴霧性能的因素 12 1.4 研究動機與目的 14 1.5 文獻回顧 14 1.6 論文架構 17 第二章 田口方法 18 2.1 簡介 18 2.2 參數設計之基本概念與公式 18 2.2.1 直交表 18 2.2.2 信號雜音比(S/N比) 19 2.2.3 回應表與因子水準圖 21 2.2.4 變異數分析(ANOVA) 21 第三章 實驗設計與規劃 23 3.1 實驗材料 23 3.2 實驗方法 24 3.3 實驗步驟 25 3.4 數位水平儀量測 27 3.5 基板清洗 27 3.6 親疏水性實驗 29 3.7 霧化實驗 31 3.8 奈米二氧化矽薄膜量測規劃 32 3.8.1 厚度量測 32 3.8.2 穿透率量測 34 3.9 決定品質特性與理想機能 34 3.10 因子與水準的選擇 34 第四章 實驗結果分析與討論 37 4.1 小面積噴塗均勻性分析實驗 37 4.1.1 SiO2噴塗參數 37 4.1.2 實驗量測 38 4.1.3 實驗數據與結果 38 4.2 大面積噴塗均勻性分析實驗 46 4.2.1 品質特性與理想機能 46 4.2.2 直交表與實驗數據 46 4.2.3 S/N比的計算 49 4.2.4 因子反應表與反應圖 54 4.2.5 最佳化之預估與分析 56 4.2.6 確認實驗 57 第五章 結論與未來展望 61 5.1 結論 61 5.2 未來展望 61 參考文獻 63 附錄 67 附錄A 製程儀器設備 67 附錄B 量測儀器設備 69zh_TW
dc.language.isozh_TWen_US
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0307201314574500en_US
dc.subject田口法zh_TW
dc.subjectTaguchi methoden_US
dc.subject超音波噴塗zh_TW
dc.subject薄膜均勻度zh_TW
dc.subjectUltrasonic spray coatingen_US
dc.subjectThin film uniformityen_US
dc.title以田口法對超音波噴塗鍍膜均勻度之製程參數最佳化分析zh_TW
dc.titleFabrication Parameter Optimization Analysis by Using Taguchi Methods for Ultrasonic Spray Coating Film Thickness Uniformityen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:精密工程研究所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.