Please use this identifier to cite or link to this item:
標題: 利用第一原理探討氧化鋅半導體合金薄膜之光電特性與磊晶型態研究
First-Principles Study of Optoelectronic Properties and Epitaxial Morphology of ZnO-based Semiconductor Alloy Films
作者: 邵鵬蒼
Shao, Peng-Tsang
關鍵字: 第一原理計算;first-principles;氧化鋅;能帶結構;磊晶軟化;ZnO;band structure;epitaxial softening
出版社: 精密工程學系所
引用: 1. 2. 3. http:/ 4. J. I. Pankove, ”Tunneling-Assisted Photon Emission in Gallium Arsenide pn Junctions,” Physical Review Letters, Vol 9, pp. 283, 1962. 5. J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, ”GaN electroluminescent diodes,” RCA Review, Vol 32, pp. 383, 1971. 6. S. K. Sinha and P. K. Barhai, ”Interface defects in GaN/sapphire studied using rutherford backscattering spectroscopy and channeling,” PRAMANA-journal of physics, Vol 65, pp 1293, 2004. 7. 8. K. Nakahara, T. Tanabe, H. Takasu, P. Fons, K. Iwata1, A. Yamada1, K. Matsubara, R. Hunger and S. Niki, ”Growth of Undoped ZnO Films with Improved Electrical Properties by Radical Source Molecular Beam Epitaxy,” Japanese Journal of Applied Physics, Vol. 40, pp. 250, 2001. 9. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma and M. Kawasaki, ”Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nature Materials, Vol. 4, pp. 42, 2005. 10. P. L. Liu, Y. J. Siao, and M-H Lee, ”Theoretical Studies in Epitaxial Stabilization of ZnO-based Light-emitting Semiconductors,” Proceedings Nano Science and Technology Institute 2010, Vol. 1, pp. 129, 2010. 11. T. P. Smith, W. J. Mecouch, P. Q. Miraglia, A. M. Roskowski, P. J. Hartlieb, and R. F. Davis, ”Evolution and growth of ZnO thin films on GaN(0 0 0 1) epilayers via metalorganic vapor phase epitaxy,” Journal of Crystal Growth, Vol. 257, pp. 255, 2003. 12. H. Xu, K. Ohtani, M. Yamao, and H. Ohno, ”Surface morphologies of homoepitaxial ZnO on Zn- and O-polar substrates by plasma assisted molecular beam epitaxy,” Appllied Physics Letters, Vol. 89, pp. 71918, 2006. 13. Y. R. Ryua, T. S. Lee, J. A. Lubguban, A. B. Corman, H. W. White, J. H. Leem, M. S. Han, Y. S. Park, C.J. Youn, and W. J. Kim, ”Wide-band gap oxide alloy: BeZnO,” Appllied Physics Letters, Vol. 88, pp. 052103, 2006. 14. Q. Xu, X. W. Zhang, W. J. Fan, S. S. Li, and J. B. Xia, ”Electronic structures of wurtzite ZnO, BeO, MgO and p-type doping in Zn1-xYxO (Y = Mg, Be),” Computational Materials Science, Vol. 40, pp. 72-78, 2008. 15. V. Venkatachalapathy, A. Galeckas, M. Trunk, T. Zhang, A. Azarov, and A. Y. Kuznetsov, ”Understanding phase separation in ZnCdO by a combination of structural and optical analysis,” Physical Review B, Vol. 83, pp.125315, 2011. 16. K. S. Ahn, T. Deutsch, Y. Yan, C. S. Jiang, C. L. Perkins, J. Turner, and M. AI-Jassim, ”Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation,” Journal of Applied Physics, Vol. 102, pp. 023517, 2007. 17. G. Kresse and J. Hafner, ”Ab initio molecular dynamics for open-shell transition metals,” Physical Review B, Vol. 48, pp. 13115, 1993. 18. G. Kresse and J. Furthmuller, ”Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, Vol. 54, pp. 11169, 1996. 19. G. Kresse and D. Joubert, ”From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, Vol. 59, pp. 1758, 1999. 20. M. C. Payne, M. P. Teter, D. C. Ailan, T. A. Arias, and J. D. Joannopouios, ”Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, pp 1045, 1992. 21. V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, ”Electronic Structure, Properties, and Phase Stability of Inorganic Crystals: A Pseudopotential Plane-Wave Study,” International Journal of Quantum Chemistry, Vol. 77, pp 895–910, 2000. 22. J. Wrobel and K. J. Kurzydłowski, K. Hummer, G. Kresse, and J. Piechota, ”Calculations of ZnO properties using the Heyd-Scuseria-Ernzerhof screened hybrid density functional,” Physical Review B, Vol. 80, pp. 155124, 2009. 23. A. Janotti and C. G Van de Walle, ”Fundamentals of zinc oxide as a semiconductor,” Reports on Progress in Physics, Vol. 72, pp. 126501, 2009. 24. X. F. Fan, Z. Zhu, Y. S. Ong, Y. M. Lu, Z. X. Shen, and J. L. Kuo, ”A direct first principles study on the structure and electronic properties of BexZn1−xO,” Appllied Physics Letters, Vol. 91, pp. 121121, 2007. 25. X. Su, P. Si, Q. Hou, X. Kong, W. Cheng, ”First-principles study on the bandgap modulation of Be and Mg co-doped ZnO systems,” Physica B, Vol. 404, pp 1794–1798, 2009. 26. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, ”MgxZn1−xO as a II–VI widegap semiconductor alloy,” Appllied Physics Letters, Vol. 72, pp. 2466, 1998. 27. A. El-Shaer, A. Che Mofor, A. Bakin, M. Kreye, and A. Waag, ”Layer by layer growth of ZnO on (0001) sapphire substrates by radical-source molecular beam epitaxy,” Superlattices and Microstructures, Vol. 38, pp. 265, 2005. 28. A. El-Shaer, A. Bakin, M. Al-Suleiman, S. Ivanov, A. Che Mofor, and A. Waag, ”Growth of wide band gap wurtzite ZnMgO layers on (0001) Al2O3 by radical-source molecular beam epitaxy,” Superlattices and Microstructures, Vol. 42, pp. 129, 2007. 29. A. Yoshida, A. Wakahara, and H. J. Kim, ”Energy-band Structures of ZnMgO and Related Wide-gap Semiconductors by First Principles Calculations,” Proc. International Conference on Electrical Engineering, Vol. ME1-09, ICEE2006. 30. T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, K. Tamura, and H. Koinuma, ”Band gap engineering based on MgxZn1−xO and CdyZn1−yO ternary alloy films,” Appllied Physics Letters, Vol. 78, pp. 1237, 2001. 31. D. W. Ma, Z. Z. Ye, and L. L. Chen, ”Dependence of structural and optical properties of Zn1–xCdxO films on the Cd composition,” Physica Status Solidi A, Vol. 201, pp. 2929-2933, 2004. 32. S. Shigemori, A. Nakamura, J. Ishihara, T Aoki and J. Temmyo, ”Zn1-xCdxO Film Growth Using Remote Plasma-Enhanced Metalorganic Chemical Vapor Deposition,” Japanese Journal of Applied Physics, Vol. 43, pp L1088-L1090, 2004. 33. F.K. Shan, G.X. Liu, W.J. Lee, and B.C. Shin, ”Stokes shift, blue shift and red shift of ZnO-based thin films deposited by pulsed-laser deposition,” Journal of Crystal Growth, Vol. 291, pp. 328, 2006. 34. K. Kakiuchi, E. Hosno, and S. Fujihara, ”Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719J,” Journal of Photochemistry and Photobiology A, Vol. 179, pp. 81-85, 2006. 35. J. Fan, R. Freer, ”The roles played by Ag and Al dopants in controlling the electrical properties of ZnO varistors,” Journal of Applied Physics, Vol. 77, pp. 4795, 1995. 36. Y. Li, X. Zhao, and W. Fan, ”Structural, Electronic, and Optical Properties of Ag-Doped ZnO Nanowires: First Principles Study,” The Journal of Physical Chemistry C, Vol. 115, pp. 3552, 2011. 37. G. Chai, C. Lin, J. Wang, M. Zhang, J. Wei, and W. Cheng, ”Density Functional Theory Simulations of Structures and Properties for Ag-Doped ZnO Nanotubes,” The Journal of Physical Chemistry C, Vol. 115, pp 2907, 2011. 38. K. Samanta, P. Bhattacharya, and R. S. Katiyar, ”Microstructural and ferromagnetic properties of Zn1−xCuxO thin films,” Journal of Applied Physics, Vol. 105, pp. 113929, 2009. 39. L. H. Ye, A. J. Freeman, and B. Delley, ”Half-metallic ferromagnetism in Cu-doped ZnO: Density functional calculations,” Physical Review B, Vol. 73, pp. 033203, 2006. 40. K. Ueda, H. Tabata, and T. Kawai, ”Magnetic and electric properties of transition-metal-doped ZnO films,” Applied Physics Letters, Vol. 79, pp. 988, 2001. 41. J. Heyd, G. E. Scuseria, and M. Ernzerhof, ”Hybrid functionals based on a screened Coulomb potential,” Journal of Chemical Physics, Vol. 118, pp. 8207, 2003; Vol. 124, pp. 219906, 2006. 42. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov and G. E. Scuseria, ”Influence of the exchange screening parameter on the performance of screened hybrid functionals,” Journal of Chemical Physics, Vol. 125, pp. 224106, 2006. 43. F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, ”Defect energetics in ZnO: A hybrid Hartree-Fock density functional study,” Physical Review B, Vol. 77, pp. 245202, 2008. 44. D. Vogel, P. Kruger, and J. Pollmann, ”Ab initio electronic-structure calculations for II-VI semiconductors using self-interaction-corrected pseudopotentials,” Physical Review B, Vol. 52, pp. R14316, 1995. 45. N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, ”Control of preferred orientation for ZnOx films: control of self-texture,” Journal of Crystal Growth, Vol. 130, pp. 269, 1993. 46. P. Hohenberg and W. Kohn, ”Inhomogeneous electron gas,” Physical Review, Vol. 136, pp. B864, 1964. 47. M. Born and R. Oppenheimer, ”Zur Quamtentheorie der Molekeln,”Annalen der Physik, Vol. 84, pp 457, 1927. 48. W. Kohn and L. J. Sham, ”Self-consistent equations including exchange and correlation effects,” Physical Review, Vol. 140, pp. A1133, 1965. 49. R. W. Godby, M. Schluter, L. J. Sham, ”Self-energy operators and exchange-correlation potentials in semiconductors,” Physical Review B, Vol. 37, pp. 10159, 1988. 50. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, ”Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, Vol. 46, pp. 6671, 1992. 51. J. P. Perdew, K. Burke, and M. Ernzerhof, ”Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, pp. 3865, 1996. 52. M. Ernzerhof and G. E. Scuseria, ”Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional,” Journal of Chemical Physics, Vol. 110, pp. 5029, 1999. 53. C. Adamo and V. Barone, ”Toward reliable density functional methods without adjustable parameters: The PBE0 model,” Journal of Chemical Physics, Vol. 110, pp. 6158, 1999. 54. V. Ozolins, C. Wolverton, and A. Zunger, ”Strain-induced change in the elastically soft direction of epitaxially grown face-centered-cubic metals,” Applied Physics Letters, Vol. 72, pp. 427, 1998. 55. C. N. Varney, G.L.W. Hart, and C. Wolverton, ”A coherency strain model for hexgonal-close-packed alloys,” TMS Letters, Vol. 1, pp 35, 2004. 56. J. P. Perdew and Y. Wang, ”Accurate and simple analytic representation of the electron-gas correlation energy,” Physical Review B, Vol. 45, pp. 13244, 1992. 57. R. R. REEBER, ”Lattice Parameters of ZnO from 4.20 to 296°K,” Journal of Applied Physics, Vol. 41, pp. 5063, 1970. 58. P. Lawaetz, ”Stability of the Wurtzite Structure,” Physical Review B, Vol. 5, pp. 4039, 1972. 59. J. Serrano, A. H. Romero, F. J. Manjo’n, R. Lauck, M. Cardona, and A. Rubio, ”Pressure dependence of the lattice dynamics of ZnO: An ab initio approach,” Physical Review B, Vol. 69, pp. 094306, 2004. 60. Z. J. Wang and I. Tanaka, ”Conduction-Band Structures of Wurtzite ZnO Solid Solutions by First Principles Calculations,” Materials Transactions, Vol. 50, pp. 1067-1070, 2009. 61. H. L. Shi, and Y. Duan, ”Band-gap bowing and p-type doping of (Zn, Mg, Be)O wide-gap semiconductor alloys: a first-principles study,” European Physical Journal B, Vol. 66, pp. 439, 2008. 62. L. Dong and S. P. Alpay, ”Theoretical analysis of the crystal structure, band-gap energy, polarization, and piezoelectric properties of ZnO-BeO solid solutions,” Physical Review B, Vol. 84, pp. 035315, 2011. 63. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, ”Valence-band ordering in ZnO,” Physical Review B, Vol. 60, pp. 2340, 1999. 64. X. Tang, H. F. Lu, J. J. Zhao, Q. Y. Zhang, ”Study on the doping stability and electronic structure of wurtzite Zn1-xCdxO alloys by first-principle calculations,” Journal of Physics and Chemistry of Solids, Vol. 71, pp. 336, 2010. 65. Y. Yan, M. M. AI-Jassim, and S. H. Wei, ”Doping of ZnO by group-IB elements,” Applied Physics Letters, Vol. 89, pp. 181912, 2006. 66. M. Ferhat, A. Zaoui, and R. Ahuja, ”Magnetism and band gap narrowing in Cu-doped ZnO,” Applied Physics Letters, Vol. 94, pp. 142502, 2009. 67. T. S. Herng, S. P. Lau, S. F. Yu, H. Y. Yang, X. H. Ji, J. S. Chen, N. Yasui, and H. Inaba, ”Origin of room temperature ferromagnetism in ZnO:Cu films,” Journal of Applied Physics, Vol. 99, pp. 086101, 2006. 68. 69. S. Saib, N. Bouarissa, ”Structural parameters and transition pressures of ZnO:ab-initio calculations, ” Physica Status Solidi (b), Vol. 244, pp. 1063–1069, 2007. 70. G. Carlottit, D. Fiorettot, G. Socinot, and E. Verona, ”Brillouin scattering determination of the whole set of elastic constants of a single transparent film of hexagonal symmetry,” Journal of Physics: Condensed Matter, Vol. 7, pp. 9147-9153, 1995. 71. S. Desgreniers, ”High-density phases of ZnO: Structural and compressive parameters, ” Physical Review B, Vol. 58, pp. 14102, 1998. 72. P. L. Liu, and Y. J. Siao, ”Ab initio study on preferred growth of ZnO,” Scripta Materialia, Vol. 64, pp. 483-485, 2011.
本研究係以第一原理(First-principles)密度泛函理論(Density functional theory, DFT)並採用混合泛函(Heyd-Scuseria-Ernzerhof, HSE)對Zn1-xMxO(M =Be, Mg, Cd, Ag, and Cu)半導體合金之原子結構、能帶結構、電子結構與磊晶軟化擇優生長方向進行研究。我們發現當摻雜x=0.5的Be時Zn0.5Be0.5O化合物能隙增加至4.1 eV,摻雜x=0.5的Mg時Zn0.5Mg0.5O化合物能隙增加至3.58 eV,摻雜x=0.5的Cd時Zn0.5Cd0.5O化合物能隙減少至1.52 eV,摻雜x=0.5的Ag時Zn0.5Ag0.5O化合物能隙減少至0.95 eV,摻雜x=0.5的Cu時Zn0.5Cu0.5O化合物能隙減少至1.18 eV。我們進一步發現當ZnO摻雜Cu與Ag兩種元素時O 2p與Cu 3d以及O 2p與Ag 4d軌域之間強耦合作用在縮減能帶以及詮釋最高佔據態(Highest occupied molecular orbital, HOMO)與最低未佔據態(Lowest unoccupied molecular orbital, LUMO)之獨特空間分部格局中所引導出的半金屬行為。接著我們探討ZnO薄膜材料之磊晶軟化生長機制,Zn0.5Cd0.5O薄膜的磊晶軟化擇優生長方向為 ,Zn0.5Mg0.5O、Zn0.5Ag0.5O與Zn0.5Cu0.5O薄膜的磊晶軟化擇優生長方向由原先ZnO的 轉變為 。

We conduct first-principles total-energy density functional of hybrid functional calculations to study the atomic structures, band structures, electronic structures,and epitaxial softening of Zn1-xMxO (M = Be, Mg, Cd, Ag, Cu) semiconductor alloys.We find the energy bandgap of Zn0.5Be0.5O and Zn0.5Mg0.5O increased to 4.1 eV and 3.58 eV, respectively. We also find the energy bandgap of Zn0.5Cd0.5O, Zn0.5Ag0.5O and Zn0.5Cu0.5O decreased to 1.52 eV, 0.95 eV and 1.18 eV, respectively.We find that the strong coupling between O 2p and Cu 3d or Ag 4d bands plays a key role in narrowing of band gaps and leading to the half-metallic behavior interpreted with the unique spatial distribution pattern between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO).We show that Zn1-xMxO systems will change the preferred orientation from ZnO to expect Zn0.5Cd0.5O.
其他識別: U0005-1408201217562500
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.