Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4298
標題: 利用第一原理探討缺陷雙層富勒烯C60@C240儲氫結構
Double-shell C60@C240 Fullerenes with Defects for Hydrogen Storage: An Ab-initio Study
作者: 洪嘉陽
Hong, Jia-Yang
關鍵字: 第一原理;ab-initio;儲氫;富勒烯;史東-威爾斯缺陷;空位缺陷;hydrogen storage;fullerene;Stone-Wales defect;vacancy defect
出版社: 精密工程學系所
引用: 1.A. Zttel,” Hydrogen storage methods,” Naturwissenschaften, Vol. 91, pp. 157-172 (2004). DOI 10.1007/s00114-004-0516-x 2.H. Cheng, L. Chen, A. C. Cooper, X. Shaa and G. P. Pez,” Hydrogen Spillover in the Context of Hydrogen Storage using Solid-state Materials,” Energy & Environmental Science, Vol. 1, pp. 338-354 (2008). DOI: 10.1039/b807618a 3.H. Xiao, S.H. Li, and J.X. Cao,“First-principles Study of Pd-decorated Carbon Nanotube for Hydrogen Storage,” Chemical Physics Letters, Vol.483, pp. 111-114 (2009). DOI:10.1016/j.cplett.2009.10.047 4.H. W. Kroto, J. R. Heath, S. C. O''Brien, R. F. Curl, and R. E. Smalley,” C60:Buckminsterfullerene,”Nature, Vol. 318, pp. 162-163 (1985). DOI: 10.1021/cr00006a005 5.Y. Kubota, M. Takata, R. Matsuda, R. Kitaura, S. Kitagawa, K. Kato,M. Sakata, and T. C. Kobayashi,” Direct Observation of Hydrogen Molecules Adsorbed onto a Microporous Coordination Polymer,” Angewandte Chemie (International ed.), Vol. 44, pp. 920-923 (2005). DOI: 10.1002/anie.200461895 6.H. Li, M. Eddaoudi, M. O`Keeffe and O. M. Yaghi,” Design And Synthesis Of An Exceptionally Stable And Highly Porous Metal-Organic Framework,”Nature, Vol. 402, pp. 276-279 (1999). DOI:10.1038/46248 7.R. Strobela, J. Garcheb, P.T. Moseleyc, L. Jorissenb and G. Wolfn,” Hydrogen Storage by Carbon Materials,” Journal of Power Sources, Vol. 159, pp. 781-801 (2006). DOI:10.1016/j.jpowsour.2006.03.047 8.Q. Sun, P. Jena, Q. Wang and M. Marquez,” First-Principles Study of Hydrogen Storage on Li12C60,” Journal of the American Chemical Society, Vol 128, pp. 9741-9745 (2006). DOI: 10.1021/ja058330c 9.O. V. Pupysheva, A. A. Farajian and B. I. Yakobson,” Fullerene Nanocage Capacity for Hydrogen Storage,” Nano letters, Vol. 8, pp. 767-774 (2008). DOI: 10.1021/nl071436g 10.Y. Murata, M. Murata, and K. Komatsu,” 100% Encapsulation of a Hydrogen Molecule into an Open-Cage Fullerene Derivative and Gas-Phase Generation of H2@C60,” Journal of the American Chemical Society, Vol. 125, pp. 7152-7153 (2003). DOI: 10.1021/ja0354162 11.Y. Ma, Y. Xia, M. Zhao, R. Wang and L. Mei,” Effective Hydrogen Storage in Single-wall Carbon Nanotubes,” Physical Review B, Vol. 63, pp. 115422 (2001). DOI: 10.1103/PhysRevB.63.115422 12.M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne,” First-principles Simulation: Ideas, Illustrations and the CASTEP code,”J. Phys.-Condes. Matter., Vol. 14, pp. 2717-2744 (2002). DOI:10.1088/0953-8984/14/11/301 13.G. Niranjan, P. Max, F. George, K.-S. Dominic and A. Jan,” A Generalized Synchronous Transit Method for Transition State Location,” Computational Materials Science, Vol. 28, pp. 250-258 (2003). DOI:10.1016/S0927-0256(03)00111-3 14.S. Park, D. Srivastava and K. Cho,” Local Reactivity of Fullerenes and Nano-Device Applications,” Nanotechnology, Vol. 12, pp. 245–249 (2001). DOI:10.1088/0957-4484/12/3/308 15.V. Z. Mordkovich, A. G. Umnov and T. Inoshita,” Nanostructure of Laser Pyrolysis Carbon Blacks: Observation of Multiwall Fullerenes,” International Journal of Inorganic Materials, Vol. 2, pp. 347-353 (2000). DOI:10.1016/S1466-6049(00)00031-3 16.V. Z. Mordkovich and Y. Takeuchi, “Multishell Fullerenes by Laser Vaporization Ofcomposite Carbon–metal Targets,” Chemical Physics Letters, Vol. 355, pp.133-138 (2002). DOI: 10.1016/S0009-2614(02)00196-3 17.C. He, N. Zhao, C. Shi, X. Du, J. Li, and L. Cui, “A Practical Method for the Production of Hollow Carbon Onion Particles,” Journal of Alloys and Compounds, Vol. 425, pp. 329–333 (2006). DOI: 10.1016/j.jallcom.2006.01.031 18.E. Thune, T. Cabioc’h, M. Jaouen, and F. Bodart,“Nucleation and Growth of Carbon Onions Synthesized by Ion Implantation at High Temperatures,” Physical Review B, Vol. 68, pp. 115434 (2003). DOI: 10.1103/PhysRevB.68.115434 19.S. Tomita, T. Sakurai, H. Ohta, M. Fujii and S. Hayashia,” Structure and Electronic Properties of Carbon Onions,” Journal of Chemical Physics, Vol. 114, pp. 7477-7482 (2006). DOI: 10.1063/1.1360197 20.B. I. Yakobsona, G. Samsonidzea, G.G. Samsonidzeb,” Atomistic theory of mechanical relaxation in fullerene nanotubes,” Carbon, Vol. 38, pp. 1675-1680 (2000). DOI: 10.1016/S0008-6223(00)00093-2 21.F. Banhart, J. Kotakoski and A. V. Krasheninnikov,” Structural Defects in Graphene,” ACS Nano, Vol. 5, pp. 26-41 (2011). DOI: 10.1021/nn102598m 22.S. Malola, H. Hakkinen and P. Koskinen1,” Structural, chemical, and dynamical trends in graphene grain boundaries,” Physical Review B, Vol. 81, pp. 165447 (2010). DOI: 10.1103/PhysRevB.81.165447 23.J.-P. Deng, D.-D. Ju, G.-R. Her, and C.-Y. Mou,” Odd-Numbered Fullerene Fragment Ions from C60 Oxides,” Journal of Physical Chemistry., Vol. 97, pp. 11575-11577 (1993). DOI: 10.1021/j100147a002 24.S. C. O''Brien, J. R. Heath, R. F. Curl, and R. E. Smalley,” Photophysics of buckminsterfullerene and other carbon cluster ions,” Journal of Chemical Physics, Vol. 88, pp. 220-230 (1988). DOI: 10.1063/1.454640 25.Y. Zhao, Y.-H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang,” Hydrogen Storage in Novel Organometallic Buckyballs,” Physical Review Letters, Vol. 94, pp. 155504 (2005). DOI: 10.1103/PhysRevLett.94.155504 26.T. Yildirim, Jorge Iniguez, and S. Ciraci,” Molecular and dissociative adsorption of multiple hydrogen molecules on transition metal decorated C60,” Physical Review B, Vol. 72, pp. 153403 (2005). DOI: 10.1103/PhysRevB.72.153403 27.Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe,” Clustering of Ti on a C60 Surface and Its Effect on Hydrogen Storage,”Journal of the American Chemical Society, Vol. 127, pp. 14582-14583 (2005). DOI: 10.1021/ja0550125 28.W. H. Shin, S. H. Yang, W. A. Goddard, and J. K. Kanga,” Ni-dispersed fullerenes: Hydrogen storage and desorption properties,” Applied Physics Letters, Vol. 88, pp. 053111 (2006). DOI: 10.1063/1.2168775 29.M. Yoon, S. Yang, E. Wang, and Z. Zhang,” Charged Fullerenes as High-Capacity Hydrogen Storage Media,” Nano Letters, Vol. 7, pp. 2578-2583 (2007). DOI: 10.1021/nl070809a 30.Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe,”Theoretical Study of Hydrogen Storage in Ca-Coated Fullerenes,” Journal of Chemical Theory and Computation, Vol. 5, pp. 374-379 (2009). DOI: 10.1021/ct800373g 31.H. Lee, B. Huang, W. Duan, and J. Ihm,” Ab initio study of beryllium-decorated fullerenes for hydrogen storage,” Journal of Applied Physics, Vol. 107, pp. 084304 (2010). DOI: 10.1063/1.3387750 32.L. Turkera and S. Erkoc,” AM1 treatment of endohedrally hydrogen doped fullerene, nH2@C60,” Journal of Molecular Structure (Theochem), Vol. 638, pp. 37-40 (2003). DOI: 10.1016/S0166-1280(03)00421-4 33.Y.X. Ren, T.Y. Ng, and K.M. Liew,” State of hydrogen molecules confined in C60 fullerene and carbon nanocapsule structures,” Carbon, Vol. 44, pp. 397-406 (2006). DOI: 10.1016/j.carbon.2005.09.009 34.T. T. Vehvilainen, M. G. Ganchenkova, L. E. Oikkonen, and R. M. Nieminen,” Hydrogen interaction with fullerenes: From C20 to graphene,” PHYSICAL REVIEW B, Vol. 84, pp. 085447 (2011). DOI: 10.1103/PhysRevB.84.085447 35.G. Schick, T. Jarrosson, and Y. Rubin, “Formation of an Effective Opening within the Fullerene Core of C60 by an Unusual Reaction Sequence,” Angewandte Chemie (International ed.), Vol. 38, pp. 2360-2363 (1999). DOI: 10.1002/(SICI)1521-3773(19990816)38:16<2360::AID-ANIE2360>3.0.CO;2-V 36.P. Hohenberg and W. Kohn, ”Inhomogeneous Electron Gas,” Physical Review, Vol. 136, pp. B864 (1964). DOI: 10.1103/PhysRev.136.B864 37.W. Kohn and L. J. Sham, ”Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review, Vol.140, pp. A1133 (1965). DOI: 10.1103/PhysRev.140.A1133 38.J. P. Perdew and Y. Wang, “Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation,” Physical Review B, Vol. 33, pp. 8800 (1986). DOI: 10.1103/PhysRevB.33.8800 39.J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, “Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation,” Physical Review B, Vol. 46, pp. 6671 (1992). DOI: 10.1103/PhysRevB.46.6671 40.J. P. Perdew, K Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, pp. 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865 41.T. A. Halgren and W. N. Lipscomb “The Synchronous-Transit Method for Determining Reaction Pathways and Locating Molecular Transition States,” Chemical Physics Letters, Vol. 49, pp. 225-232 (1977). DOI: 10.1016/0009-2614(77)80574-5
摘要: 
在本論文中係利用第一原理(ab-initio)密度泛函計算史東-威爾斯缺陷(Stone-Wales Defect)與空位缺陷(Vacancy defect)對雙層富勒烯C60@C240儲氫結構之影響,我們分別建立了三種不同氫原子經由富勒烯表面之史東-威爾斯缺陷以及空位缺陷進入雙層富勒烯C60@C240儲氫結構內部路徑,並透過氫原子與含有缺陷之雙層富勒烯C60@C240儲氫結構之交互作用能,了解氫原子經由缺陷進入雙層富勒烯C60@C240儲氫結構所需之能障,分析氫原子進入雙層富勒烯內部儲氫之可能路徑。在含有史東-威爾斯缺陷雙層富勒烯C60@C240儲氫結構研究中,能障最低路徑為在雙層富勒烯C60和C240表面的史東-威爾斯缺陷彼此間接相對,氫原子穿過C240的史東-威爾斯缺陷所需能量為0.7 eV而穿過C60的史東-威爾斯缺陷所需的能量為0.54 eV。在含有空位缺陷雙層富勒烯C60@C240儲氫結構研究中,能障最低路徑為在雙層富勒烯C60和C240表面的雙顆空位缺陷彼此直接相對,氫原子穿過C240的雙顆原子空位缺陷所需能量為2.81 eV而穿過C60的雙顆原子空位缺陷所需的能量為0.98 eV。

This work clearly shows the effect of Stone-Wales defect and vacancy defect on the hydrogen storage according to ab-initio calculations, which are also used to search for the most favorable energy pathway for H atom to migrate from the defects to the double-layer fullerene among three hypothesis paths. As regarding the Stone-Wales defects in the double-layer fullerene, the most favorable energy pathway locates between adjacently indirect Stone-Wales defects on the surface of C60 and C240 in the double-layer fullerene. The C60 and C240 energy barriers for H atom migration are 0.54 and 0.7 eV, respectively. As considering the vacancy defects in the double-layer fullerene, the most favorable energy pathway exists between adjacently direct double-vacancy defects. The C60 and C240 energy barriers for the H atom migration are 0.98 and 2.81 eV, respectively.
URI: http://hdl.handle.net/11455/4298
其他識別: U0005-0207201317575200
Appears in Collections:精密工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.