Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4299
標題: 利用第一原理計算探討氫氣及氨氣在氧化鋅表面之研究
Ab initio Study of the Hydrogen and Ammonia Molecule on ZnO Surfaces
作者: 吳彥廷
Wu, Yen-Ting
關鍵字: 第一原理計算;first-principles;氧化鋅;表面能;ZnO;surface energy
出版社: 精密工程學系所
引用: [1] I. L. Azevedo, M. G. Morgan, and F. Morgan, “The transition to solid-state lighting,” Proceedings of the IEEE, Vol. 97, pp. 481, 2009. [2] J. Y. Tsao, “Solid state lighting,” IEEE Circuits and Devices Magazine, Vol. 20, pp. 28, 2004. [3] C. T. Hendrickson, D. H. Matthews, M. Ashe, P. Jaramillo, and F. C. McMichael, “Reducing environmental burdens of solid-state lighting through end-of-life design,” Environmental Research Letters, Vol. 5, pp. 014016, 2010. [4] J. K. Kim and E. F. Schubert, “Transcending the replacement paradigm of a solid-state lighting,” Optics Express, Vol. 16 , pp. 21835, 2008. [5] D. H. Matthews, H. S. Matthews, P. Jaramillo, and C. L. Weber, “Energy consumption in the production of high-brightness light-emitting diodes,” IEEE International Symposium on Sustainable Systems and Technology, Vol. 9, pp. 1, 2009. [6] L. Tahkamo, A. Ylinen, M. Puolakka, and L. Halonen, “Life cycle cost analysis of three renewed street lighting installations in Finland,” The International Journal of Life Cycle Assessment, Vol. 17, pp. 154, 2012. [7] G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, Vol. 54, pp. 11169 (1996). [8] G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, Vol. 6, pp. 15 (1996). [9] G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” Journal of Physics: Condensed Matter, Vol. 6, pp. 8245 (1994). [10] G. Kresse and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, Vol. 59, pp. 1758 (1999). [11] H. L. Shi and Y. Duan, “Band-gap bowing and p-type doping of (Zn, Mg, Be)O wide-gap semiconductor alloys: a first-principles study,” European Physical Journal B, Vol. 66, pp. 439, 2008. [12] Q. Xu , X. W. Zhang , W. J. Fan , S. S. Li, and J. B. Xia, “Electronic structures of wurtzite ZnO, BeO, MgO and p-type doping in Zn1-xYxO (Y = Mg, Be),” Computational Materials Science, Vol. 44, pp. 72, 2008. [13] X. D. Zhang, M. L. Guo, W. X. Li, and C. L. Liu, “First-principles study of electronic and optical properties in wurtzite Zn1−xCdxO,” Journal of Applied Physics, Vol. 103, pp. 063721, 2008. [14] X. Tang, H. Lu, Q. Zhang, J. Zhao, and Y. Lin, “Study on interactions between Cadmium and defects in Cd-doped ZnO by first-principle calculations,” Solid State Sciences, Vol. 13, pp. 384, 2011. [15] B. Zhao, H. Yang, G. Du, G. Miao, Y. Zhang, Z. Gao, T. Yang, J. Wang, W. Li, Y. Ma, X. Yang, B. Liu, D. Liu, and X. Fang, “High-quality ZnO/GaN/Al2O3 heteroepitaxial structure grown by LP–MOCVD,” Journal of Crystal Growth, Vol. 258, pp. 130, 2003. [16] J. Dai, H. Liu, W. Fang, L. Wang, Y. Pu, Y. Chen, and F. Jiang, “Atmospheric pressure MOCVD growth of high-quality ZnO films on GaN/Al2O3 templates,” Journal of Crystal Growth, Vol. 283, pp. 93, 2005. [17] T. P. Smith, W. J. Mecouch, P. Q. Miraglia, A. M. Roskowski, P. J. Hartlieb, and R. F. Davis, “Evolution and growth of ZnO thin films on GaN(0001) epilayers via metalorganic vapor phase epitaxy,” Journal of Crystal Growth, Vol. 257, pp. 255, 2003. [18] C.J. Pan, C.W. Tu, C. J. Tun, C. C. Lee, and G. C. Chi, “Structural and optical properties of ZnO epilayers grown by plasma-assisted molecular beam epitaxy on GaN/sapphire (0001),” Journal of Crystal Growth, Vol. 305, pp. 133, 2007. [19] S. K. Hong, H. J. Ko, Y. Chen, T. Hanada, and T. Yao, “Evolution of initial layers of plasma-assisted MBE grown ZnO on (0001)GaN/sapphire,” Journal of Crystal Growth, Vol. 214/215, pp. 81, 2000. [20] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy,” Applied Physics Letters, Vol. 77, pp. 3761, 2000. [21] C. W. Lin, D. J. Ke, Y. C. Chao, L. Chang, M. H. Liang, and Y. T. Ho, “Atomic layer deposition of epitaxial ZnO on GaN and YSZ,” Journal of Crystal Growth, Vol. 298, pp. 472, 2007. [22] M. Sano, K. Miyamoto, T. Yao, and H. Kato, “Role of hydrogen in molecular beam epitaxy of ZnO,” Journal of Applied Physics, Vol. 95, pp 5527, 2004. [23] D. J. Rogers, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M. R. Correira, M. Peres, A. Neves, D. McGrouther, J. N. Chapman, and M. Razeghi, “Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN,” Applied Physics Letters, Vol. 91, pp. 071120, 2007. [24] A. Ougazzaden, D.J. Rogers, F. Hosseini Teherani, T. Moudakir, S. Gautier, T. Aggerstam, S. Ould Saad, J. Martin, Z. Djebbour, O. Durand, G. Garry, A. Lusson, D. McGrouther, and J.N. Chapman, “Growth of GaN by metal organic vapor phase epitaxy on ZnO-buffered c-sapphire substrates,” Journal of Crystal Growth, Vol. 310, pp. 944, 2008. [25] J. Dai, F. Jiang, Y. Pu, L. Wang, W. Fang, and F. Li, “NH3-assisted growth approach for ZnO films by atmospheric pressure metal-organic chemical vapor deposition,” Applied Physics A: Materials Science & Processing, Vol. 89, pp. 645, 2007. [26] N. Li, E. H. Park, Y. Huang, S. Wang, A. Valencia, B. Nemeth, J. Nause, and I. Ferguson, “Growth of GaN on ZnO for Solid State Lighting Applications,” Proceedings of SPIE, Vol. 6337, pp. 63370Z-1, 2006. [27] T. Hasegawa, Y. Shirotori, K. Ozawa, K. Edamoto, and K. Takahashi, “Room temperature adsorption of NH3 on Zn-terminated ZnO(0001),” Applied Surface Science, Vol. 237, pp. 352, 2004. [28] E. Z. Liu and J. Z. Jiang, “Magnetism of O-Terminated ZnO(0001) with Adsorbates,” The Journal of Physical Chemistry C, Vol. 113, pp. 16116, 2009. [29] J. F. Liu, E. Z. Liu, H Wang, N. H. Su, J. Qi, and J. Z. Jiang, “Surface magnetism in amine-capped ZnO nanoparticles,” Nanotechnology, vol. 20, pp. 165702, 2009. [30] K. Yamamoto, K. Kobayashi, H. Kawanowa, and R. Souda, “Difference in the outermost layer between TaB2(0001)…and HfB2(0001),” Physical Review B, Vol. 60, pp 15617, 1999. [31] P. L. Liu and Y. J. Siao, “Ab initio study on preferred growth of ZnO,” Scripta Materialia, Vol. 64, pp. 483, 2011. [32] Y. J. Siao, P. L. Liu, and Y. T Wu, “Ab initio study of atomic hydrogen on ZnO surfaces,” Applied Physics Express, Vol. 4, pp. 125601, 2011. [33] C. Xu, Y. Jiang, D. Yi, S. Sun, and Z. Yu, “Environment-dependent surface structures and stabilities of SnO2 from the first principles,” Journal of Applied Physics, Vol. 111, pp 063504, 2012. [34] P. Hohenberg and W. Kohn, ”Inhomogeneous electron gas,” Physical Review, Vol. 136(3B), pp. B864, 1964. [35] M. Born and R. Oppenherimer, “Zur Quantentheorie der Molekeln,” Annalen der Physik, Vol. 389, pp. 457, 1927. [36] W. Kohn and L. J. Sham, ”Self-consistent equations including exchange and correlation effects,” Physical Review, Vol. 140(4A), pp. A1133, 1965. [37] D. Vanderbilt, ” Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Physical Review B, Vol. 41, pp. 7892, 1990. [38] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Physical Review B, Vol. 45, pp. 13244, 1992. [39] J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, Vol. 46, pp. 6671, 1992. [40] J. P. Perdew, K Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, pp. 3865, 1996. [41] M. Ernzerhof and G. E. Scuseria, “Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional,” Journal of Chemical Physics, Vol. 110, pp. 5029, 1999. [42] B. Meyer, “First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen,” Physical Review B, Vol. 69, pp. 045416, 2004.
摘要: 
本研究係以第一原理(First-principles)計算氫分子(H2)以及氨分子(NH3)對ZnO表面能的影響。首先建立四組表面結構,分別為Zn-terminated ZnO(0001)、O-terminated ZnO(0001)、ZnO(2-1-10)及ZnO(10-10)表面之ZnO原子模型。當氫分子作用於上述表面結構,計算結果顯示僅有O-terminated ZnO(0001)表面結構會使氫分子分解產生2個H原子,且在O-rich和H-rich限制條件下會鍵結成水分子產生負表面能,其餘表面皆不會與氫分子反應。此外,我們進一步探討氨分子與Zn-terminated ZnO(0001)、O-terminated ZnO(0001)二組ZnO極性表面結構之影響,在氨分子作用下,結果顯示氨分子會直接完整的吸附在Zn-terminated ZnO(0001)表面上的Zn原子上,僅在O-terminated ZnO(0001)表面結構會使氨分子分解產生4個H原子,並在ZnO表面之氧原子形成水分子,並且產生負表面能。綜上所述,O-terminated ZnO(0001)表面不管在氫分子或者氨分子氣相下,表面均為負表面能, O-terminated ZnO(0001)為ZnO表面中在氫分子或氨分子環境下較為穩定的表面。

We conducted first-principles total-energy density functional calculations to study the interaction of H2 and NH3 on ZnO surfaces. Four surface models such as Zn-terminated (0001)-, O-terminated (0001)-, (10-10)-, and (2-1-10)-oriented ZnO planes in the presence of H2 and NH3 are evaluated. The result shows that only surfaces complying with O-terminated (0001)-oriented ZnO models exhibit active sites for the dissociation of H2, which in turn enables the formation of water due to the dissociative chemisorption of 2H on the surface oxygen atoms of ZnO surfaces. The surface energy of O-terminated ZnO(0001) surface in the presence of water is found to be a negative energy of −0.01 eV under the O-rich and H-rich condition. In addition, We made NH3 to locate at varied positions on Zn-terminated and O-terminated ZnO(0001) surfaces. To our calculations for these models, molecules adsorb onto Zn-terminated ZnO(0001) surfaces. But only the O-terminated ZnO(0001) surfaces allow NH3 molecules to dissociate to get H atoms, leading to the formation of the H2O molecules on surfaces. The surface energy in the presence of water was negative energy of −0.06 eV in both the O-rich and H-rich conditions. We concluded that H2 and NH3 molecules can make O-terminated ZnO(0001) surface relatively stable.
URI: http://hdl.handle.net/11455/4299
其他識別: U0005-1408201217505000
Appears in Collections:精密工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.