Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4300
DC FieldValueLanguage
dc.contributor劉柏良zh_TW
dc.contributor.author陳建舜zh_TW
dc.contributor.authorChen, Chien-Shunen_US
dc.contributor.other精密工程學系所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-06T06:27:29Z-
dc.date.available2014-06-06T06:27:29Z-
dc.identifierU0005-1908201223014800en_US
dc.identifier.citation[1] H. P. Maruska and J. J. Tietjen, “The Preparation And Properties Of Vapor-deposited Single-crystalline GaN,” Applied Physics Letters, Vol. 15, pp. 327, 1969. [2] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Applied Physics Letters, Vol. 75, pp. 1360, 1999. [3] Y. S. Wu, J. H. Cheng, W. C. Peng, and H. Ouyang, “Effects of laser sources on the reverse-bias leakages of laser lift-off GaN-based light emitting diodes,” Applied Physics Letters, Vol. 90, pp. 251110, 2007. [4] J. Park, K. M. Song, S. R. Jeon, J. H. Baek, and S. W. Ryu, “Doping selective lateral electrochemical etching of GaN for chemical lift-off,” Applied Physics Letters, Vol. 94, pp. 221907, 2009. [5] J. S. Ha, S. W. Lee, H. J. Lee, H. J. Lee, S. H. Lee, H. Goto, T. Kato, K. Fujii, M. W. Cho, and T. Yao “The Fabrication of Vertical Light-Emitting Diodes Using Chemical Lift-Off Process,” IEEE Photonics Technology Letters, Vol. 20, PP. 175, 2008. [6] D. J. Rogers, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M. R. Correira, M. Peres, A. Neves, D. McGrouther, J. N. Chapman, and M. Razeghi, “Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN,” Applied Physics Letters, Vol. 91, pp. 071120, 2007. [7] C. F. Lin, J. J. Dai, M. S. Lin, K. T. Chen, W. C. Huang, C. M. Lin, R. H. Jiang, and Y. C. Huang, “An AlN Sacrificial Buffer Layer Inserted into the GaN/Patterned Sapphire Substrate for a Chemical Lift-Off Process,” Applied Physics Express, Vol. 3, pp. 031001, 2010. [8] C. F. Lin, J. J. Dai, G. M. Wang, and M. S. Lin, “Chemical Lift-Off Process for Blue Light-Emitting Diodes,” Applied Physics Express 3, pp. 092101, 2010. [9] T. Y. Tsai, S. L. Ou, M. T. Hung, D. S. Wuu, and R. H. Horngc, “MOCVD Growth of GaN on Sapphire Using a Ga2O3 Interlayer,” Journal of The Electrochemical Society, Vol. 158, pp. H1172, 2011. [10] T. Y. Tsai, R. H. Horng, D. S. Wuu, S. L. Ou, M. T. Hung, and H. H. Hsueh, “GaN epilayer grown on Ga2O3 sacrificial layer for chemical lift-off application,” Electrochemical and Solid-State Letters, Vol. 14, pp. H434, 2011. [11] P. L. Liu, Y. J. Siao, Y. T. Wu, C. H. Wang, and C. S. Chen, “Structural, electronic and energetic properties of GaN[0001]/Ga2O3[100] heterojunctions: A first-principles density functional theory study,” Scripta Materialia, Vol. 65, pp. 465-468, 2011. [12] G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physics Review B, Vol. 54, pp. 11169, 1996. [13] G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, Vol. 6, pp. 15, 1996. [14] G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements,” Journal of Physics: Condensed Matter, Vol. 6, pp. 8245, 1994. [15] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physics Review B, Vol. 59, pp. 1758, 1999. [16] R. Roy, V. G. Hill, and E. F. Osborn, “Polymorphism of Ga2O3 and the System Ga2O3-H2O” Journal of the american chemical society, Vol. 74, pp. 719, 1952. [17] S. Geller “Crystal Structure of β-Ga2O3,” The journal of chemical physics, Vol. 33, pp. 676, 1960. [18] H. H. Tippins, “Optical Absorption and Photoconductivity in the Band Edge of β-Ga2O3,” Physics Review, Vol. 140, pp. A316-A319, 1965. [19] N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, “Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals,” Applied physics letters, Vol 70, pp. 3561, 1997. [20] J. M. Phillips, J. Kwo, G. A. Thomas, S. A. Carter, R. J. Cava, S. Y. Hou, J. J. Krajewski, J. H. Marshall, W. F. Peck, D. H. Rapkine, and R. B. van Dover, “Transparent conducting thin films of GaInO3,” Applied physics letters, Vol. 65, pp. 115, 1994. [21] M. Ogita, N. Saika, Y. Nakanishi, and Y. Hatanaka “Ga2O3 thin films for high-temperature gas sensors,” Applied Surface Science, Vol. 142, pp. 188, 1999. [22] M. Ogita, K. Higo, Y. Nakanishi, and Y. Hatanaka “Ga2O3 thin films for oxygen sensor at high temperature,” Applied Surface Science, Vol. 175-176, pp. 721, 2001. [23] T. Schwebel, M. Fleischer, H. Meixner, and C. D. Kohl, ‘CO-Sensor for domestic use based on high temperature stable Ga2O3 thin films,” Sensors and Actuators B, Vol. 49, pp. 46, 1998. [24] Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, and Y. Li, “O2 and CO sensing of Ga2O3 multiple nanowire gas sensors,” Sensors and Actuators B, Vol. 129, pp. 666, 2008. [25] M. Fleischer, M. Seth, C. D. Kohl, and H. Meixner, “A selective H2 sensor implemented using Ga2O3 thin-films which are covered with a gas-filtering Si2O layer,” Sensors and Actuators B, Vol. 35-36, pp. 297, 1996. [26] A. Trinchi , S. Kaciulis, L. Pandolfi, M. K. Ghantasala, Y. X. Li, W. Wlodarski, S. Viticoli, E. Comini, and G. Sberveglieri, “Characterization of Ga2O3 based MRISiC hydrogen gas sensors,” Sensors and Actuators B, Vol. 103, pp. 129, 2004. [27] S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Growth of GaN and AlGaN on (100) β-Ga2O3 substrates,” Physica Status Solidi (c), Vol. 9, pp.519, 2012. [28] L. Liu and J.H. Edgar, “Substrates for gallium nitride epitaxy,” Materials Science and Engineering R, Vol. 37, pp. 61, 2002. [29] E. G. Villora, K. Shimamura, K. Aoki, Noboru, and Ichinose, “Reconstruction of the β-Ga2O3 (100) cleavage surface to hexagonal GaN after NH3 nitridation,” Journal of Crystal Growth, Vol. 270, pp. 462, 2004. [30] K. Shimamura, E. G. Villora, K. Domen, K. Yui, K. Aoki, and N. Ichinose, “Epitaxial Growth of GaN on (100) β-Ga2O3 Substrates by Metalorganic Vapor Phase Epitaxy,” Japanese Journal of Applied Physics, Vol. 44, pp. L7, 2005. [31] E. G. Vı’llora, K. Shimamura, K. Aoki, and Kenji Kitamura, “Molecular beam epitaxy of c-plane wurtzite GaN on nitridized a-plane β-Ga2O3,” Thin Solid Films, Vol. 500, pp. 209, 2006. [32] H. J. Lee, T. I. Shin, and D. H. Yoon, “Influence of NH3 gas for GaN epilayer on β-Ga2O3 substrate by nitridation,” Surface & Coatings Technology, Vol. 202, pp. 5497, 2008. [33] S. Ohira, M. Yoshioka, T. Sugawara, K. Nakajima, and T. Shishido, “Fabrication of hexagonal GaN on the surface of β-Ga2O3 single crystal by nitridation with NH3,” Thin Solid Films, Vol. 496, pp. 53, 2006. [34] C. M. Balkas and R. F. Davis, “Synthesis routes and characterization of high-purity, single-phase gallium nitride powders,” Journal of the American Ceramic Society, Vol. 79, pp. 2309, 1996. [35] H. Kiyono, T. Sakai, M. Takahashi, and S. Shimada, “Thermogravimetric analysis and microstructural observations on the formation of GaN from the reaction between Ga2O3 and NH3,” Journal of Crystal Growth, Vol. 312, 19, pp. 2823, 2010. [36] S. E. Collins, M. A. Baltana’s, and A. L. Bonivardi, “Hydrogen Chemisorption on Gallium Oxide Polymorphs,” Langmuir, Vol. 21, pp. 962, 2005. [37] E. A. Gonzalez, P. V. Jasen, A. Juan, S. E. Collins, M. A. Baltana’s, and A. L. Bonivardi, “Hydrogen adsorption on β-Ga2O3(100) surface containing oxygen vacancies,” Surface Science, Vol. 575, pp. 171, 2005. [38] W. Jochum, S. Penner, K. Fottinger, R. Kramer, G. Rupprechter, and B. Klotzer, “Hydrogen on polycrystalline β-Ga2O3: Surface chemisorption, defect formation, and reactivity,” Journal of Catalysis, Vol. 256, pp. 268, 2008. [39] Y. X. Pan, D. Mei, C. J. Liu, and Q. Ge, “Hydrogen Adsorption on Ga2O3 Surface: A Combined Experimental and Computational Study,” The journal of physical chemistry, Vol. 115, pp. 10140, 2011. [40] M. Born and R. Oppenherimer, “Zur Quantentheorie der Molekeln,” Annalen der Physik, Vol. 389, pp. 457, 1927. [41] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical Review, Vol. 136(3B), pp. B864, 1964. [42] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical Review, Vol. 140(4A), pp. A1133, 1965. [43] ]D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Physical Review B, Vol. 41, pp. 7892, 1990. [44] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Physical Review B, Vol. 45, pp. 13244, 1992. [45] B. Meyer, “First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen,” Physical Review B, Vol. 69, pp. 045416, 2004.en_US
dc.identifier.urihttp://hdl.handle.net/11455/4300-
dc.description.abstract本文利用第一原理(Fist-principle)計算研究氫氣及氨氣在β-Ga2O3(100)表面之影響。首先建立出兩種極性表面Ga-terminated β-Ga2O3(100)與O-terminated β-Ga2O3(100)的表面模型,並放置氨分子在Ga-terminated β-Ga2O3(100)與O-terminated β-Ga2O3(100)表面進行模擬計算,結果顯示氨分子會整個吸附在Ga-terminated β-Ga2O3(100),而在O-terminated β-Ga2O3(100)表面氧原子則與氨氣所解離出的氫原子產生鍵結,形成OH鍵與水分子結構,產生負表面能。我們進一步研究氫原子對Ga-terminated β-Ga2O3(100)以及O-terminated β-Ga2O3(100)表面的影響,結果顯示在H-rich與O-poor的條件下,氫原子會與Ga-terminated β-Ga2O3(100)表面鎵原子形成GaH結構,表面能接近零,而在H-rich與O-rich的條件下,氫原子會與O-terminated β-Ga2O3(100)表面氧原子形成水分子結構,而達到負表面能。綜上所述,氨分子解離出的氫原子後容易與O-terminated β-Ga2O3(100)表面產生反應,形成水分子結構。zh_TW
dc.description.abstractIn this paper, the first-principle density functional theory was used to study the behavior of ammonia and hydrogen as adsorbed on the surface of β-Ga2O3(100). We built the surface models for Ga-terminated and O-terminated β-Ga2O3(100) surfaces with NH3 and H2 adsorptions. Ammonia molecules would adsorb on the surface of Ga-terminated β-Ga2O3(100), but would react with H atoms from the NH3 dissociation to create OH and H2O species on the surface of O-terminated β-Ga2O3(100). For the H-rich and O-poor environment, H molecules would bond with Ga-terminated β-Ga2O3(100) to form GaH while the surface energy was nearly zero. On the contrary, H atoms would react with O- on the surface of O-terminated β-Ga2O3(100) to form H2O while the surface energy was negative. We conclude that the H species dissociated from NH3 preferentially react with O- and H2O structure is formed a result.en_US
dc.description.tableofcontents致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 論文架構 2 第二章 文獻回顧 3 2-1 β-Ga2O3材料特性與應用 3 2-3 氮分子於Ga2O3表面之文獻回顧 3 2-4 氫氣於Ga2O3表面之文獻回顧 5 第三章 理論計算方法 7 3-1 前言 7 3-2 Born-Oppenheimer近似 7 3-3 密度泛函理論 7 3-3.1 Hohenberg-Kohn 理論 8 3-3.2 Kohn-Sham 方程 9 3-3.3 局域密度近似法 11 3-4 廣義梯度近似法 11 3-5 膺勢 11 3-6 表面能計算方法 12 第四章 氨氣於β-Ga2O3表面之影響 15 4-1 前言 15 4-2 表面模型建立 15 4-3 表面能計算 16 4-4 結果討論 17 4-5 結論 18 第五章 氫氣在β-Ga2O3表面的影響 26 5-1 前言 26 5-2 表面模型建立 26 5-3 表面能計算方法 27 5-4 結果討論 28 5-5 結論 29 第六章 結論 36 第七章 參考文獻 37zh_TW
dc.language.isozh_TWen_US
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201223014800en_US
dc.subject第一原理zh_TW
dc.subjectFirst-Principlesen_US
dc.subject氧化鎵zh_TW
dc.subject表面能zh_TW
dc.subject化學勢zh_TW
dc.subjectβ-Ga2O3en_US
dc.subjectsurface energyen_US
dc.subjectchemical potentialen_US
dc.title利用第一原理計算研究氫氣及氨氣在氧化鎵表面之影響zh_TW
dc.titleThe Effect of Hydrogen and Ammonia Molecule on β-Ga2O3 Surface: A First-principles Studyen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:精密工程研究所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.