Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4301
標題: 含有主動釋放機制的微夾鉗之設計與分析
Design and analysis of a microgripper with an active release mechanism
作者: 林政彥
Lin, Cheng-Yen
關鍵字: 微機電系統;MEMS;電沉積;撓性雙穩態結構;微夾鉗;electrodeposition;compliant bistable mechanism;microgripper
出版社: 精密工程學系所
引用: [1]. Ran Zhang, Jinkui Chu, Haixiang Wang, Zhaopeng Chen, 2013, “A multipurpose electrothermal microgripper for biological,” Microsystem Technologies, 2013, Volume 19, Issue 1, pp 89-97 [2]. M. Mehdi S. Mousavi, Giorgio De Pasquale, Aurelio Soma, Eugenio Brusa,2011, “A novel SU-8 microgripper with external actuator for biological cells manipulation,” Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2011 Symposium, pp. 356 - 361 [3]. Brandon K. Chen, Yong Zhang, and Yu Sun, 2009, “Active release of microobjects using a MEMS microgripper to overcome adhesion forces,” Journal of Microelectromechanical Systems, Vol. 18, No. 3, June 2009, pp. 1057-7157 [4]. Jose A. Martinez, Roberto R. Panepucci, 2007, “Design, fabrication, and characterization of a microgripper device,” Florida Conference on Recent Advances in Robotics, FCRAR 2007 [5]. Nawaz Ali, M.M.Hassan and Rana I. Shakoor, 2011, “Design, modeling and simulation of electrothermally actuated microgripper with integrated capacitive contact sensor,” Multitopic Conference (INMIC), 2011 IEEE 14th International, pp. 201 - 206 [6]. Trinh Chu Duc, Gih-Keong Lau, J. Fredrik Creemer, and Pasqualina M. Sarro, 2008, “Electrothermal microgripper with large jaw displacement and integrated force sensors,” Journal of Microelectromechanical Systems, Vol. 17, No. 6, December 2008, pp. 1546 - 1555 [7]. Mohd Nashrul Mohd Zubir and Bijan Shirinzadeh, 2009, “Modeling and design of a high precision microgripper for microhandling operation,” ICIT 2009. IEEE International Conference, pp. 1 - 6 [8]. REMackay, H R Le, S Clark and J A Williams, 2013, “Polymer micro-grippers with an integrated force sensor for biological manipulation,” Journal of micromechanics and microengineering [9]. Keith Houston, Clemens Eder, Arne Sieber, Arianna Menciassi, Maria Chiara Carrozza and Paolo Dario, 2007, “Polymer sensorised microgrippers using SMA actuation,” 2007 IEEE International Conference on Robotics and Automation Roma, Italy, pp. 820 – 825 [10]. Su, H.J. and McCarthy, J.M., 2005, “Synthesis of Compliant Mechanisms with Specified Equilibrium Positions,” Proceedings of 2005 ASME Design Engineering Technical Conferences, September 24–28, 2005, Long Beach, California, USA, pp. 61-69 (paper no. DETC2005-85085). [11]. Qiu, J., Lang, J.H., and Slocum, A.H., 2005, “A Bulk-Micromachined Bistable Relay with U-Shaped Thermal Actuators,” Journal of Microelectromechanical Systems, Vol. 14, pp. 1099-1109. [12]. Gomm, T., Howell, L.L., and Selfridge, R.H., 2005, “In-Plane Linear Displacement Bistable Microrelay,” Journal of Micromechanics and Microenginering, Vol. 12, pp. 257-264. [13]. Jensen, B.D., 1998, “Identification of Macro- and Micro- Compliant Mechanism Configurations Resulting in Bistable Behavior,” M.S. Thesis, Brigham Young University, Provo, Utah [14]. Tsay, J., Su, L.Q., and Sung, C.K., 2005, “Design of a Linear Micro-Feeding System Featuring Bistable Mechanisms,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 63-70.4 [15]. Ko, J.S., Lee, M.G., Han, J.S., Go, J.S., Shin, B., and Lee, D.S., 2006, “A Laterally-Driven Bistable Electromagnetic Microrelay,” ETRI Journal, Vol. 28, pp. 389-392. [16]. Wang, D.A., Pham, H.T., and Hsieh, Y.H., 2009, “Dynamical Switching of an Electromagnetically Driven Compliant Bistable Mechanism,” Sensors and Actuators A, Vol. 149, pp. 143-151. [17]. Freudenreich, M., Mescheder, U., and Somogyi, G.., 2003, “Design Considerations and Realization of a Novel Micromechanical Bi-Stable Switch,” Transducers 2003 Workshop, pp. 1096-1099. [18]. Wagner, B., Quenzer, H.J., Hoerschelmann, S., Lisec, T., and Juerss, M., 1996, “Bistable Microvalve with Pneumatically Coupled Membranes,” Proceedings of IEEE MEMS 1996 Conference, pp. 384-388. [19]. Hansen, B.J., Carron, C.J., Jensen, B.D., Hawkins, A.R., and Schultz, S.M., 2007, “Plastic Latching Accelerometer Based on Bistable Compliant Mechanisms,” Smart Material and Structures, Vol. 16, pp. 1967-1972. [20]. Casals-Terre, J. and Shkel, A., 2005, “Snap-Action Bistable Micromechanism Actuated by Nonlinear Resonance,” Proceedings of IEEE Sensors 2005, pp. 893-896. [21] Wang, D.A, Chiu, Y.S., 2010, “Design, fabrication and characterization of a magnetically actuated Co-Ni bistable micromechanism,” Graduate Institute of Precision Engineering of NCHU, pp. 1-77
摘要: 
本文是探討一個以電磁式致動,具有主動釋放機制之雙穩態微夾鉗,此微夾鉗之主要特性如作動位移量大小、作動力及致動電流等,皆為研究探討之對象。以電磁力驅動微夾鉗後,分析其位移量以及運動情形,並以反作用力的變化來判斷其是否具有雙穩態特性。
在分析模擬方面,使用ABAQUS有限元素分析模擬軟體來進行模擬,分析結構的雙穩態特性、結構之變形及電磁致動力的大小,並觀察微夾鉗之位移量及反作用力大小的關係,確認夾持及釋放之過程。
在製程方面,本研究採用UV-LIGA製程,取代傳統的矽微加工製程,利用微影製程與電沉積製程,在玻璃板上製作出鎳金屬結構微夾鉗。本研究利用犧牲層的技術,利用鎳和銅、鈦金屬之間附著性良好與蝕刻選擇比大的特性,製作出懸空的微夾鉗。
而在實驗裝置的應用上則是使用直流電源以及永久磁鐵,利用電磁力來驅動微結構,利用結構的雙穩態特性,來達到主動釋放以及減少耗能的目的。

A new microgripper integrated with a bistable mechanism is presented to provide a way for motion control of microgripper, where gripping and release are achieved when the bistable mechanism moves forward and backward, respectively. The design parameters are displacement, bistability, and the actuated force. With current applied to the microgripper, the relationship between displacement and the reaction force of the compliant bistable mechanism are investigated.
UV-LIGA process are used for the fabrication of the prototype, We use photolithography and electrodeposition to fabricate Ni microgripper on glass substrates. On the fabrication aspect, taking advantage of good adhesion and selectively etching properties between Ni, Cu and Ti, using Cu as the sacrificial layer to fabricate the Ni microgripper.
In the experimental setup is using of the DC power supply and the permanent magnet to provide electromagnetic force driving the microgripper. With the embedded bistable mechanism, the microgripper actively releases the microobject and requires no power input during holding of microobjects to reduce energy consumption.
URI: http://hdl.handle.net/11455/4301
其他識別: U0005-1908201311390900
Appears in Collections:精密工程研究所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-102-7100067012-1.pdf961.02 kBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.