Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4309
標題: 微槳型樑結構試件製作良率提升之研究
Study on the yield improvement of micro paddle cantilever beam fabrication
作者: 方冠楨
Fang, Kuan-Chen
關鍵字: 微槳型樑;micro paddle cantilever beam;KOH蝕刻;負載效應;KOH etch;loading effect
出版社: 精密工程學系所
引用: [1] J. Karttunen, J. Kiihamaki, S. Franssila, “Loading effects in deep silicon etching”, SPIE, vol.4174,pp.90-97,2000. [2] H. C. Nathanson,W. E. Newell, R. A. Wickstrom, “A resonant gate silicon bandpass transistor”, Electron Devices Meeting, 1965. [3] LIGA process flow, http://terpconnect.umd.edu/~sandborn/research/ JPL_MEMS/ microeng_liga.html [4] 全球MEMS產值成長預估圖, http://edm.itri.org.tw/enews/epaper/ 9812/c01.htm [5] MEMS cantilever SEM, http://www.tufts.edu/as/tampl/program99/ finalprojects/tmems/background.html [6] MEMS bridge SEM, http://www.inesc-mn.pt/Thin%20film%20MEMS/ nems.htm [7] MEMS membrane SEM, http://www.elmos.com/produkte/know-how/ mems-sensors.html [8] MEMS mirror SEM, http://www.soloconsultingservices.com/mems. html [9] H. Nili, K. Kalantar-zadeh, M. Bhaskaran, “In situ nanoindentation: Probing nanoscale multifunctionality” Progress in Materials Science, vol.55,pp.1-29,2013. [10] R. P. Vinci and J. J. Vlassak, “Mechanical behavior of thin films” Annual Review of Materials Science, Vol.26, pp.431-462, 1996. [11] A. J. Kalkman and A.H. Verbruggen, “High-temperature bulge-test setup for mechanical testing of free-standing thin films” Rev.Sci. Instrum., vol.74, No.3,2003. [12] D. T. Read and J. W. Dally, “Strength, ductility and fatigue life of aluminum thin films”, International Journal of Microcircuits and Electric Packaging 16(4),pp.313-318,1993. [13] M. A. Haque, and M.T.A. Saif, "In-situ tensile testing of nano-scale specimens in SEM and TEM", Experimental Mechanics, 42(1), pp.123-128,2002. [14] Vacuum gauge, http://www.lesker.com/newweb/Gauges/gauges_ technicalnotes_1.cfm [15] 張俊彥,積體電路製程及設備技術手冊,經濟部技術處,1997。 [16] Off-orientation by crystallographic directions, http://www. fcm-germany. com/ images/ PDF/off-orientation.pdf [17] AZ Electronic Materials (Germany) GmbH. [18] Peter Van Zant, Microchip Fabrication, McGraw-Hill Professional. [19] 晶片刮傷SEM, http://www.csm-instruments.com/en/Scratch [20] CMP刮傷掃描圖, http://www.siglaz.com/newsroom/whitepapers.htm [21] Joo Hoon Choi, C. S. Korach, “Nanoscale Defect Generation in CMP of Low-k/Copper Interconnect Patterns”, J. Electrochem. Soc., vol.156, issue 12, H961-H970,2009. [22] 光阻氣泡缺陷圖, http://semitech.blogspot.tw/2006/12/ 193nm-immersion-lithography-193nm.html [23] P. A. Alvi, V. S. Meel, K. Sarita, J. Akhtar, K. M. Lal, A. Azam and S. A. H. Naqvi, “A STUDY ON ANISOTROPIC ETCHING OF (100) SILICON IN AQUEOUS KOH SOLUTION”, Int. J. Chem. Sci., vol. 6(3), pp.1168-1176,2003. [24] Virginia Semiconductor, Inc., “Wet-Chemical Etching and Cleaning of Silicon”, 2003. [25] K. Sato, “Basic 2 Anisotropic Wet-etching of Silicon: Characterization and Modeling of Changeable Anisotropy”, COE for Education and Research of Micro-Nano Mechatronics Nagoya University. [26] M. Elwenspoek, “On the mechanism of anisotropic etching of silicon”, J. Electrochem. Soc., vol. 140, no. 7, pp. 2075-2080,1993 [27] M. A. Gos lvez, K. Sato, A. S. Foster et al., “An atomistic introduction to anisotropic etching”, J. Micromech. Microeng., vol.17(4):, pp.S1∼S26, 2007. [28] N. Maluf, “An Introduction to Microelectromechanical Systems Engineering”, Artech House, 2000. [29] D. Kingsbury, Laboratory notes in the Integrated Mechanical Testing Laboratory, Arizona State University, unpublished. [30] 水平爐管技術資料, 國家奈米元件實驗室 [31] G. R. Trott, A. Shorey, “Glass Wafer Mechanical Properites: A Comparison To Silicon”, Corning Incorporated report. [32] Wafer Thinning: Techniques for Ultra-thin Wafers, http://www. electroiq. com/articles/ap/print/volume-12/issue-3/features/ wafer-thinning-techniques-for-ultra-thin-wafers.html [33] Resistivity of n-type (red curve) and p-type (blue curve) silicon versus doping density, http://ecee.colorado.edu/~bart/book/mobility.htm #resistivity [34] Lynn Fuller, “Microelectromechanical Systems (MEMs) Unit Processes for MEMs Etching”, 2012. [35] 李建宜,以濕蝕刻研製微機電微波濾波器,國立成功大學碩士論文 [36] S. Franssila, “Introduction to Microfabrication, Second Edition”, John Wiley and Sons, 2010. [37] KOH Silicon Etch II, https://www.mems-exchange.org/catalog/P1749/
摘要: 
本論文在探討微槳型樑結構試件製作時,所產生的缺陷原因作探討,對現有製程所遭遇之缺陷問題做改善, 在經過製程改善後良率由原本低於8%增加到超過50%,自行製作之光阻塗佈機吸盤-晶圓對準裝置,可減少晶圓變形程度,也可減少黃光室使用時間,大幅降低了製作成本。另外發現震盪槽製程會嚴重破壞氮化矽薄膜,是造成微槳型樑結構試件缺陷的主要原因。
另外於改善大部分孔洞型缺陷後發現,矽晶圓在KOH蝕刻時有蝕刻速率變慢之情形,因此也針對影響KOH蝕刻速率之原因作探討,包括高/低離子參雜濃度、有/無經過超音波震盪清洗以及是否有晶圓圖形等,並發現晶圓圖形矽裸露區域之多寡會影響KOH蝕刻速率,造成圖形之負載效應(loading effect)[1]。

In this paper, we study on the defect root cause analysis and process defect improvement in micro paddle cantilever beam fabrication. After improvement, the yield increase from below 8% to over 50%. The wafer centering tool using on PR coating stage were designed and fabricated by myself. It not only reduces the wafer distortion, but also save the clean room using time and cost. Besides, we find ultrasonic clean will damage silicon nitride film seriously, and it was main defect root cause of micro paddle cantilever beam.
In the progress of defect improvement, we find Si wafer have different etch rate in KOH etch. This paper also discuss on this phenomena, include high/low doping, with/without ultrasonic clean and with/without pattern on wafer. We find that pattern density (silicon open area) will affect the KOH etch rate, it called pattern density loading effect[1].
URI: http://hdl.handle.net/11455/4309
其他識別: U0005-1808201316402900
Appears in Collections:精密工程研究所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-102-5098075005-1.pdf5.78 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.