Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4311
標題: 應用於能量收集的磁性薄膜的製作
Fabrication of a magnetic diaphragm for energy harvesting
作者: 蕭哲明
Hsiao, Che-Ming
關鍵字: 電磁式能量收集器;magnetic energy harvester;PDMS薄膜;磁性薄膜;卡門渦流;PDMS diaphragm;magnetic diaphragm;Kármán vortex street
出版社: 精密工程學系所
引用: [1] 江秉清,2009,利用Fe-PDMS複合薄膜應用於微流體晶片之方法與實驗,國立成功大學,碩士論文。 [2] Mack, B., Kratt,K., Sturmer, M., Wallrabe, U., (2009), Electromagnetic micro generator array consisting of 3d micro coils opposing a magnetic PDMS membrane, Transducers 2009, June 21-25. [3] Khoo, M., Liu, C., (2000), A novel micromachined magnetic membrane microfluid pump, Proceedings of the 22nd Annual EMBS International Conference ,July 23-28. [4] Pirmoradi, F., Cheng, L., Chiao, M., (2010), A magnetic poly(dimethylesiloxane) composite membrane incorporated with uniformly dispersed, coated iron oxide nanoparticles, Journal of Micromechanics and Microengineering, Vol.20, 015032 (7pp). [5] Weinstein, L. A., Cacan, L., (2012), Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows, Smart Materials and structure, Vol.21, 045003 (10pp). [6] Molino-Minero-Re, E., Carbonell-Ventura, M., Fisac-Fuentes, C., Manuel-Lazaro, A., Toma, D. M., (2012), Piezoelectric Energy Harvesting from Induced Vortex in Water Flow, Instrumentation and Measurement Technology Conference, pp. 624 - 627. [7] Zhu, D., Beeby, S. P., Tudor, M. J., White N. M., Harris, N. R., (2013), Novel Miniature Airflow Energy Harvester for Wireless Sensing Applications in Buildings, IEEE SENSORS JOURNAL, Vol. 13, pp. 691 - 700. [8] Tapia, C. S., Chellai, R., (2010), Simple Karman Street model, OCEANS 2010 IEEE. [9] Venugopal, A., Agrawal, A., Prabhu, S. V., (2011), Influence of blockage and shape of a bluff body on the performance of vortex flowmeter with wall pressure measurement, Measurement, Vol. 44, pp. 954 - 964. [10] Dai, X., Miao, X., Shao, G., Wang, W., (2013), A novel fast and low cost replication technology for high-aspect-ratio magnetic microstructures, Microsyst Technol, Vol. 19, pp. 403 - 407. [11] Singh, A., Shirolkar, M., Limaye, J., Gershenfeld, M. V., Gokhale, S., Khan-Malek, C., Kulkarni, S. K., (2013), A magnetic nano-composite soft polymeric membrane, Microsyst Technol, Vol. 19,pp. 409 - 418. [12] Huang, M.-C., Chang, T.-L., Kao, T.-H., Fu, C.-C., (2001), Metal deposition on flexible membrane through the combination of localized electrochemical deposition and electroless plating, Microsyst Technol, Vol. 19, pp. 455 - 460. [13] Nguyen, H.-D., Pham, H.-T., Wang, D.-A., (2013), A miniature pneumatic energy generator using Kármán vortex street, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 116, pp. 40 - 48. [14] Wang, D.-A., Chao, C.-W., Chen, J.-H., (2013), A miniature hydro energy generator based on pressure fluctuation in Kármán vortex street, Journal of Intelligent Material Systems and Structures, Vol. 24, pp. 612 - 626. [15] Wang, D.-A., Chiu, C.-Y., Pham, H.-J., (2012), Electromagnetic energy harvesting from vibrations induced by Kármán vortex street, Mechatronics, Vol. 22, pp. 746 - 756. [16] Wang, D.-A., Liu, N.-Z., (2011), A Shear Mode Piezoelectric Energy Harvester Based on a Pressurized Water Flow, Sensors and Actuators A: Physical, Vol. 167, pp. 449 - 458.
摘要: 
本研究在於設計並製作磁性薄膜並應用於卡門渦流驅動之電磁式能量收集器,此能量收集器主要作動方式系於流道柱形障礙物後固定一片磁性薄膜,當氣流進入流道因遇柱型障礙物在後方引發卡門渦流,進而帶動磁性薄膜產生固定頻率之振動,置於流道上方之螺旋線圈因磁場的改變感應產生電動勢,最後達成能量收集之目的。
在製程方面,首先利用電鍍製程製作鈷鎳錳磷(CoNiMnP)合金之磁性材料,再將其與聚二甲基矽氧高分子(Polydimethylsiloxane,PDMS)結合而成,產生具有彈性與磁性之薄膜。
本實驗結果在風速30m/s條件下能量收集器可產生2.502mV感應電壓,並於流道內量到頻率1434Hz振幅0.183KPa之壓力變化。

A magnetic diaphragm applied for magnetic energy harvester based on von Kármán vortex street is developed. The energy harvester is actuated by pressure fluctuation generated by the vortex street behind a bluff body in a air flow channel.
In the fabrication process, CoNiMnP alloy is made by electroplating process. The combination of the alloy and Polydimethylsiloxane (PDMS) is used as the flexible and magnetic diaphragm.
Experimental results show that an open circuit output voltage of 2.502 mV are generated when the pressure oscillates with an amplitude of nearly 0.183KPa and a frequency of about 1434 Hz with the wind velocity of 30m/s.
URI: http://hdl.handle.net/11455/4311
其他識別: U0005-1908201320173900
Appears in Collections:精密工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.