Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorIn-Cha Hsiehen_US
dc.contributor.authorYu, Ming-Hungen_US
dc.identifier.citation[1] J. C. J. M. Van Den Bergh and F. R. Bruinsma, Managing the Transition to Renewable Energy: Theory and Practice From Local, Regional and Macro Perspectives (Edward Elgar Pub, 2008), 187. [2] A. Hagfeldt and M. Graetzel, “Light-Induced Redox Reactions in Nanocrystalline Systems,” Chem. Rev., 95 (1), pp.49–68(1995). [3] S. A. Haque, Y. Tachibana, D. R. Klug, and J. R. Durrant, “Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films under Externally Applied Bias,” J. Phys. Chem. B, 102 (10), 1745–1749(1998). [4] R. Memming, Semiconductor electrochemistry, Wiley-VCH, Weicheim, (2001) [5] H.Tsubomura,M. Matsumura, Y.Nomura, and T.Amamiya, “Dye sensitized zinc oxide/aqueous electrolyte/platinum photocell,”Nature, Vol. 261, 402-403(1976). [6] M.Gratzel,and B.O''Regan, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, Vol. 353, No. 24,737-740(1991). [7] K. Kalyanasundaram, M. Gratzel, "Applications of functionalized transition metal complexes in photonic and optoelectronic devices", Coordination Chemistry Reviews, Vol. 177, Issue 1, 347-414(1998). [8] 郭政宜、連水養、陳家富,製備多孔性TiO2薄膜應用於染料敏化太陽能電池之研究,2008 [9] L. L.Amy, L. Guangquan, and T. Y.John, Jr.*, "Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results," Chem. Rev, Vol. 95, 735-758(1995). [10] 葉宸希,二氧化鈦薄膜電極應用於染料敏化太陽能電池之研究,國立台南大學自然科學教育研究所,碩士論文,2006。 [11] 彭懷夫,中孔性二氧化鈦薄膜於染料敏化太陽能電池之應用,國立東華大學化學研究所,碩士論文,2004。 [12] 劉茂煌,工業材料,奈米光電電池,203期,91-97。 [13] M. K.Nazeeruddin, S. M.Zakeeruddin, R.Humphry-Baker, M.Jirousek, P. Liska, N.Vlachopoulos, V.Shklover, S. M.Fischerand M. Graetzel, ”Acid-Base Equilibria of (2,2''-Bipyridyl-4,4''-dicarboxylicacid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of NanocrystallineTitania,”Inorganic Chemistry, vol. 38, num.26, 6298-6305(1999). [14] H. Greijer Agrell, J. Lindgren, A. Hagfeldt, Solar Energy 75, 169,(2003) [15] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Gra1tzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell,”J. Phys. Chem. B, vol. 107, 8981-8987(2003). [16] 史成武、戴松元、王孔嘉、潘旭、郭力,染料敏化奈米薄膜太陽能電池中電解質的研究進展,化學通報,2005,第68卷 [17] U. Bach1, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature, vol. 395, 583-585(1998). [18] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells,”Science, Vol. 295, no. 5564, 2425-2427(2002). [19] D. Gebeyehu, C. J. Brabec, N.S. Sariciftci, D. Vangeneugden, R. Kiebooms, D. Vanderzande, F. Kienberger, and H. Schindler, “Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials,” Synthetic Metals, vol. 125, 279-287(2002). [20] K.R. Haridas, J. Ostrauskaite, M. Thelakkat, M. Heim, R. Bilke, and D. Haarer, “Synthesis of low melting hole conductor systems based on triarylamines and application in dye sensitized solar cells,” Synthetic Metals, Vol. 121, Issues 1–3, 1573–1574(2001). [21] G. R. A. Kumara , S. Kaneko , M. Okuya , and K. Tennakone, “Fabrication of Dye-Sensitized Solar Cells Using TriethylamineHydrothiocyanate as a CuI Crystal Growth Inhibitor,” Langmuir, 18 (26), 10493–10495(2002). [22] B. O''Regan and D. T. Schwartz, “Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL‘NCS/CuSCN: Initiation and Potential Mechanisms,” Chem. Mater., 10 (6), 1501–1509(1998). [23] G.R.R.A Kumaraa, A. Konnoa, G.K.R. Senadeerab, P.V.V. Jayaweerab, D.B.R.A. D. Silvab, and K. Tennakoneb, “Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide,” Solar Energy Materials and Solar Cells, Vol. 69, Issue 2, 195–199(2001). [24] M. K. Nazeeruddin , A. Kay , I. Rodicio , R. Humphry-Baker , E. Mueller , P. Liska , N. Vlachopoulos and M. Graetzel,”Conversion of light to electricity by cis-X2bis(2,2''-bipyridyl-4,4''-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc., 115 (14), 6382–6390(1993). [25] 張正華、李陵嵐、葉楚平、楊平華編著,有機太陽能電池與塑料太陽能電池,化學工業出版社,2006。 [26] T. Hanmin, Z. Danyang, “High Precise Diagnosis of DSSCs Electrical Parameters based on the Equivalent Circuit Analysis,” Advances in Biomedical Engineering, Vol.8,64~68(2012). [27] L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R. H. Friend1, J. D. MacKenzie,” Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics,” Science, Vol. 293, no. 5532, 1119-1122(2001). [28] L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R. H. Friend, J. D.MacKenzie, “Self-organized discotic liquid crystals for high-efficiency organic photovoltaics ,” Science, 293, 1119(2001). [29] 鄭智鴻,量身訂作的二氧化鈦光觸媒之合成與應用,國立成功大學化學工程研究所,碩士論文, 2006。 [30] 楊淑梅,以溶膠-凝膠程序製備無機複合膜之抗高溫氧化及防蝕性質研究,私立中原大學,碩士論文,2001年。 [31] H. H. Qin, J. H. Dong, K. Y. Qiu, and Y. Wei, “Synthesis and characterization of poly(methyl acrylate-co-itaconic anhydride)/TiO2 hybrid materials via sol–gel process,” Journal of Applied Polymer Science, Vol. 78, Issue 10, 1763–1768(2000). [32] M. N. Bruce and C. Davies, “Inverse’ Organic-Inorganic Composite Materials 2. Free Radical Routes into Nonshrinking Sol-Gel Composites,” Polymer Preprints 32, 512(1991). [33] 中興大學,貴重儀器中心 [34] 中興大學,化學工程所 [35] 中興大學,化學工程系,鄭如忠教授實驗室 [36] [37] 中興大學,化學工程系,陳志銘教授實驗室 [38] Powder Diffraction File: Search Manual, Hanawalt Method Inorganic, complied by the JCPDS: International Center for Diffraction Data; in cooperation with the American Ceramic Society, Swarthmore, Pennsylvania, (1991). [39] K. Thamaphat, P. Limsuwan, and B. Ngotawornchai, “Phase Characterization of TiO2 Powder by XRD and TEM,”Nat. Sci., vol. 42, 357-361(2008). [40] Powder Diffraction File: Search Manual, Hanawalt Method Inorganic, complied by the ASTM (American Society for Testing Materials). [41] W.M. Davis, C.L. Erickson, C.T. Johnston, J.J. Delfino, and J.E. Porter, “Quantitative Fourier Transform Infrared spectroscopic investigation humic substance functional group composition,”Chemosphere, Vol. 38, Issue 12, 2913–2928(1999). [42] J. Wern-Dare, H. Yao-Min and C. Chien-Chon, “The effect of thermo-vacuum systems in the dye sensitized solar cell,”The Electrochemical Society, Vol. 33, Issue 27, 61-64(2011).en_US
dc.description.abstract本研究中探討如何能快速有效使二氧化鈦薄膜吸附染料,由於二氧化鈦薄膜為多孔性且高比表面積之特性,故使染料能快速並有效吸收為染料敏化太陽能電池之重要課題,我們分為兩部份作探討:第一部份為製作二氧化鈦工作電極時,使用旋轉塗佈法與刮刀塗佈法,並搭配二氧化鈦溶膠凝膠與P25漿料之不同組合,量測其薄膜品質之優劣。第二部份為使用真空注入法增加染料吸收的效率,並使用了本實驗室自行改造之真空注入設備與萃盤,以不同支真空壓力與是否加溫之浸泡條件觀測染料吸收的結果。 本研究目的為改善染料對於二氧化鈦薄膜之吸附效率,使用不同量測與分析方法觀察各種條件對於元件之影響,以縮短製程時間與降低成本為首要課題。使用本實驗室自製之真空注入設備將染料注入二氧化鈦薄膜並加溫50℃浸泡一小時,其效率已超越常溫常壓下浸泡八小時之試片,因此可節省染料浸泡時間,達到成本降低之目的。zh_TW
dc.description.abstractThis researchprobed how to enhance TiO2 filmsabsorbing efficiency. It is important for DSSCs absorbing dye molecular quickly because of the porous TiO2 films. We probed this topic in two sections. First section, we use spin coating method and doctor blade method with TiO2 sol-gel and P25 paste for fabricating TiO2 working electrode and tested thin films quality. Second section, we use pore filling method toenhance dye absorbing efficiency. We use custom vacuum inject equipment and tray in different pressure and heating degree to obtain dye absorbing results. The researches were focus on enhancing TiO2 filmsabsorbing efficiency and using different method to measure the samples. The most important target was that to shorten fabrication time and cost down. The efficiency of sample immersing in 50℃for one hour by custom vacuum inject equipment was better than immersing in atmospheric pressureand 25℃ for 8 hours. So by using the equipment could save immersing time to cost down.en_US
dc.description.tableofcontents中文摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VII 第一章緒論 1 1.1 前言 1 1.2 研究背景 4 1.3 研究動機 6 第二章文獻回顧與理論背景 7 2.1 染料敏化太陽能電池工作原理 7 2.2 染料敏化太陽能電池(DSSC)結構 8 2.2.1. 工作電極 9 2.2.2. 染料 12 2.2.3. 電解質 15 2.2.4. 對電極 16 2.3 染料敏化太陽能電池轉換效率理論 18 2.3.1. 太陽能電池之等效電路 18 2.3.2. 短路電流 (Short circuit current) 20 2.3.3. 開路電壓 (Open circuit voltage) 20 2.3.4. 填充因子 (Fill factor) 21 2.3.5. 能量轉換效率 (power conversionefficiency) 22 2.4 溶膠-凝膠法 22 2.4.6. 溶膠-凝膠法的概念 22 2.4.7. 溶膠-凝膠的反應製程原理 23 2.4.8. 溶膠-凝膠的反應製程步驟 24 第三章實驗介紹 26 3.1 實驗規劃 26 3.2 實驗流程 27 3.2.1. 玻璃基板製備 27 3.2.2. 製作二氧化鈦溶液 27 3.2.3. 製作二氧化鈦漿料 29 3.2.4. 製作TiO2二氧化鈦工作電極 29 3.2.5. 白金對電極製作 30 3.2.6. 熱回火製程 30 3.2.7. 染料配製 31 3.2.8. 真空法浸泡染料 31 3.2.9. 電池組裝 36 3.3 實驗設備及材料 37 3.3.1. 實驗氣體與材料 37 3.3.2. 實驗設備 38 3.3.3. 實驗工具 39 3.4 量測儀器 41 3.4.1. TiO2薄膜特性量測 41 3.4.2. 光電轉換效率量測 44 第四章結果與討論 45 4.1 薄膜特性分析 45 4.1.1. α-step之厚度分析 45 4.1.2. SEM分析 47 4.2 燒結結果之XRD分析 49 4.3 染料與工作電極特性分析 51 4.3.1. FT-IR分析 51 4.3.2. UV-VIS分析 52 4.4 光電轉換效率分析 54 第五章結論 58 第六章未來展望 59 參考文獻 60zh_TW
dc.subjectdye-sensitized solar cellen_US
dc.subjectsol-gel methoden_US
dc.subjecttitanium oxideen_US
dc.subjectpore fillingen_US
dc.titleInvestigation of efficiency relates to process of Dye Sensitized Solar Cellen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:精密工程研究所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.