Please use this identifier to cite or link to this item:
標題: 氮化鎵/氧化釓與氮化鎵/氧化鈧異質界面結構之第一原理研究
Ab-initio Study of GaN(0001)/Gd2O3(0001) and GaN(0001)/Sc2O3(111) Heterostructures
作者: 廖國成
Liao, Kuo-Cheng
關鍵字: 第一原理計算;first-principles;氮化鎵;界面能;類石墨;GaN;interface energy;graphitic-like
出版社: 精密工程學系所
引用: [1] [2]M. K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, and M. Stutzmann, “Optical process for liftoff of group III-nitride films,” Physica Status Solidi (A), 159, R3 (1997). DOI: 10.1002/1521-396X(199701)159:1<R3::AID-PSSA99993> 3.0.CO;2-F [3]W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Applied Physics Letters, 72, 599 (1998). DOI: 10.1063/1.120816 [4]Y. S. Wu, J. H. Cheng, W. C. Peng, and H. Ouyang, “Effects of laser sources on the reverse-bias leakages of laser lift-off GaN-based light-emitting diodes,” Applied Physics Letters, 90, 251110 (2007). DOI: 10.1063/1.2749866 [5]J.-S. Ha, S. W. Lee, H.-J. Lee, H.-J. Lee, S. H. Lee, H. Goto, T. Kato, Katsushi Fujii, M. W. Cho, and T. Yao, “The fabrication of vertical light-emitting diodes using chemical lift-off process,” IEEE Photonics Technology Letters, 20, 175 (2008). DOI: 10.1109/LPT.2007.912491 [6]K. Fujii, S. Lee, J.-S. Ha, H.-J. Lee, H.-J. Lee, S.-H. Lee, T. Kato, M.-W. Cho, and T. Yao, “Leakage current improvement of nitride-based light emitting diodes using CrN buffer layer and its vertical type application by chemical lift-off process,” Applied Physics Letters, 94, 242108 (2009). DOI: 10.1063/1.3155422 [7]W. C. Lee, Y. J. Lee, J. Kwo, C. H. Hsu, C. H. Lee, S. Y. Wu, H. M. Ng, and M. Hong, “GaN on Si with nm-thick single-crystal Sc2O3 as a template using molecular beam epitaxy,” Journal of Crystal Growth, 311, 2006 (2009). DOI: 10.1016/j.jcrysgro.2008.10.093 [8]H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystalline GaN,” Applied Physics Letters, 15, 327 (1969). DOI: 10.1063/1.1652845 [9]B. P. Gila, F. Ren, and C. R. Abernathy, “Novel insulators for gate dielectrics and surface passivation of GaN-based electronic devices,” Materials Science and Engineering: R: Reports, 44, 151 (2004). DOI: 10.1016/j.mser.2004.06.001 [10]M. Zinkevich, “Thermodynamics of rare earth sesquioxides,” Progress in Materials Science, 52, 597 (2007). DOI: 10.1016/j.pmatsci.2006.09.002 [11]J. X. Wang, A. Laha, A. Fissel, D. Schwendt, R. Dargis, T. Watahiki, R. Shayduk, W. Braun, T. M. Liu, and H. J. Osten, “Crystal structure and strain state of molecular beam epitaxial grown Gd2O3 on Si(111) substrates: a diffraction study,” Semiconductor Science and Technology, 24, 045021 (2009). DOI: 10.1088/0268- 1242/24/4/045021 [12]A. R. Kortan, M. Hong, J. Kwo, J. P. Mannaerts, and N. Kopylov, “Structure of epitaxial Gd2O3 films grown on GaAs(100),” Physical Review B, 60, 10913 (1999). DOI: 10.1103/PhysRevB.60.10913 [13]A. Fissel, M. Czernohorsky, and H. J. Osten, “Growth and characterization of crystalline gadolinium oxide on silicon carbide for high-K application,” Superlattices and Microstructures, 40, 551 (2006). DOI: 10.1016/j.spmi.2006.07.002 [14]W. H. Chang, P. Chang, T. Y. Lai, Y. J. Lee, J. Kwo, C.-H. Hsu, and M. Hong, “Structural characteristics of nanometer thick Gd2O3 films grown on GaN(0001),” Crystal Growth and Design, 10, 5117 (2010). DOI: 10.1021/cg100851b [15]W. H. Chang, C. H. Lee, P. Chang, Y. C. Chang, Y. J. Lee, J. Kwo, C. C. Tsai, J. M. Hong, C.-H. Hsu, and M. Hong, “High k dielectric single-crystal monoclinic Gd2O3 on GaN with excellent thermal, structural, and electrical properties,” Journal of Crystal Growth, 311, 2183 (2009). DOI: 10.1016/j.jcrysgro.2008.10.079 [16]W. H. Chang, C. H. Lee, Y. C. Chang, P. Chang, M. L. Huang, Y. J. Lee, C.-H. Hsu, J. M. Hong, C. C. Tsai, J. R. Kwo, and M. Hong, “Nanometer-thick single- crystal hexagonal Gd2O3 on GaN for advanced complementary metal-oxide- semiconductor technology,” Advanced Materials, 21, 4970 (2009). DOI: 10.1002/adma.200902101 [17]M. Hong, J. Kwo, S. N. G. Chu, J. P. Mannaerts, A. R. Kortan, H. M. Ng, A. Y. Cho, K. A. Anselm, C. M. Lee, and J. I. Chyi, “Single-crystal GaN/Gd2O3/GaN heterostructure,” Journal of Vacuum Science and Technology B, 20, 1274 (2002). DOI: 10.1116/1.1473178 [18]A. M. Herrero, B. P. Gila, C. R. Abernathy, S. J. Pearton, V. Craciun, K. Siebein, and F. Ren, “Epitaxial growth of Sc2O3 films on GaN,” Applied Physics Letters, 89, 092117 (2006). DOI: 10.1063/1.2270058 [19]R. Mehandru, B. Luo, J. Kim, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, D. Gotthold, R. Birkhahn, B. Peres, R. Fitch, J. Gillespie, T. Jenkins, J. Sewell, D. Via, and A. Crespo, “AlGaN/GaN metal–oxide-semi- conductor high electron mobility transistors using Sc2O3 as the gate oxide and surface passivation,” Applied Physics Letters, 82, 2530 (2003). DOI: 10.1063/1.1567051 [20]A. R. Kortan, N. Kopylov, J. Kwo, M. Hong, C. P. Chen, J. P. Mannaerts and S. H. Liou, “Structure of Sc2O3 films epitaxially grown on α-Al2O3(0001),” Applied Physics Letters, 88, 021906 (2006). DOI: 10.1063/1.2163989 [21]X. Weng, W. Tian, D. G. Schlom and E. C. Dickey, “Structure and chemistry of the (111)Sc2O3/(0001)GaN epitaxial interface,” Applied Physics Letters, 96, 241901 (2010). ; DOI: 10.1063/1.3454924 [22]B. P. Gila, J. W. Johnson, R. Mehandru, B. Luo, A. H. Onstine, K. K. Allums, V. Krishnamoorthy, S. Bates, C. R. Abernathy, F. Ren, and S. J. Pearton, “Gadolinium oxide and scandium oxide: gate dielectrics for GaN MOSFETs,” Physica Status Solidi (a), 188, 239 (2001). DOI: 10.1002/1521-396X(200111)188:1<239::AID- PSSA239>3.0.CO;2-D [23]L. Tarnawska, A. Giussani, P. Zaumseil, M. A. Schubert, R. Paszkiewicz, O. Brandt, P. Storck, and T. Schroeder, “Single crystalline Sc2O3/Y2O3 heterostructures as novel engineered buffer approach for GaN integration on Si(111),” Journal of Applied Physics, 108, 063502 (2010). DOI: 10.1063/1.3485830 [24]L. Tarnawska, P. Zaumseil, M. A. Schubert, S. Okur, U. Ozgur, H. Mprkoc, R. Paszkiewicz, P. Storck, and T. Schroeder, “Structural and optical quality of GaN grown on Sc2O3/Y2O3/Si(111),” Journal of Applied Physics, 111, 073509 (2012). DOI: 10.1063/1.3699201 [25]W. C. Lee, Y. J. Lee, J. Kwo, C. H. Hsu, C. H. Lee, S. Y. Wu, H. M. Ng, and M. Hong, “GaN on Si with nm-thick single-crystal Sc2O3 as a template using molecular beam epitaxy,” Journal of Crystal Growth, 311, 2006 (2009). DOI: 10.1016/j.jcrysgro.2008.10.093 [26]M. Hong, A. R. Kortan, P. Chang, Y. L. Huang, C. P. Chen, H. Y. Chou, H. Y. Lee, J. Kwo, M.-W. Chu, C. H. Chen, L. V. Goncharova, E. Garfunkel, and T. Gustafsson, “High-quality nanothickness single-crystal Sc2O3 film grown on Si(111),” Applied Physics Letters, 87, 251902 (2005). DOI: 10.1063/1.2147711 [27]G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, 54, 11169 (1996). DOI: 10.1103/PhysRevB.54.11169 [28]G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, 6, 15 (1996). DOI: 10.1016/0927-0256(96)00008-0 [29]G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” Journal of Physics: Condensed Matter, 6, 8245 (1994). DOI: 10.1088/0953-8984/6/40/015 [30]H. J. Round, “A note on carborundum,” Electrical world, 49, 309 (1907). [31]H. Welker, “On new semiconducting compounds,” Zeitschrift fur Naturforschung, 7a, 744 (1952). [32]H. Welker, “On new semiconducting compounds II,” Zeitschrift fur Naturforschung, 8a, 248 (1953). [33]J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, “Electroluminescence in GaN,” Journal of Luminescence, 4, 63 (1971). DOI: 10.1016/0022-2313(71)90009-3 [34]S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates,” Applied Physics Letters, 42, 427 (1983). DOI: 10.1063/1.93952 [35]H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Applied Physics Letters, 48, 353 (1986). DOI: 10.1063/1.96549 [36]S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulating silicon carbide substrates,” IEEE Electron Device Letters, 20, 161 (1999). DOI: 10.1109/55.753753 [37]Y. C. Chang, W. H. Chang, H. C. Chiu, L. T. Tung, C. H. Lee, K. H. Shiu, M. Hong, J. Kwo, J. M. Hong, and C. C. Tsai, “Inversion-channel GaN metal-oxide-semiconductor field-effect transistor with atomic-layer-deposited Al2O3 as gate dielectric,” Applied Physics Letters, 93, 053504 (2008). DOI: 10.1063/1.2969282 [38]R. Collazo, S. Mita, A. Aleksov, R. Schlesser, and Z. Sitar, “Growth of Ga- and N- polar gallium nitride layers by metalorganic vapor phase epitaxy on sapphire wafers,” Journal of Crystal Growth, 287, 586 (2006). DOI: 10.1016/j.jcrysgro.2005.10.080 [39]F. X. Zhang, M. Lang, J. W. Wang, U. Becker, and R. C. Ewing, “Structural phase transitions of cubic Gd2O3 at high pressures,” Physical Review B, 78, 064114 (2008). DOI: 10.1103/PhysRevB.78.064114 [40]Y. Yamada-Takamura, Z. T. Wang, Y. Fujikawa, T. Sakurai, Q. K. Xue, J. Tolle, P.-L. Liu, A. V. G. Chizmeshya, J. Kouvetakis, and I. S. T. Tsong, “Surface and interface studies of GaN epitaxy on Si(111) via ZrB2 buffer layers,” Physical Review Letters, 95, 266105 (2005). DOI: 10.1103/PhysRevLett.95.266105 [41]P.-L. Liu, A. V. G. Chizmeshya, J. Kouvetakis, and I. S. T. Tsong, “First-principles studies of GaN(0001) heteroepitaxy on ZrB2(0001),” Physical Review B, 72, 245335 (2008). DOI: 10.1103/PhysRevB.72.245335 [42]P. Hohenberg and W. Kohn, ”Inhomogeneous electron gas,” Physical Review, 136, B864 (1964). DOI: 10.1103/PhysRev.136.B864 [43]W. Kohn and L. J. Sham, ”Self-consistent equations including exchange and correlation effects,” Physical Review, 140, A1133 (1965). DOI: 10.1103/PhysRev.140.A1133 [44]J. P. Perdew and Y. Wang, “Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation,” Physical Review B, 33, 8800 (1986). DOI: 10.1103/PhysRevB.33.8800 [45]J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, 46, 6671 (1992). DOI: 10.1103/PhysRevB.46.6671 [46]J. P. Perdew, K Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters 77, 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865 [47]M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Reviews of Modern Physics, 64, 1045 (1992). DOI: 10.1103/RevModPhys.64.1045 [48]F. Ren, M. Hong, J. P. Mannaerts, J. R. Lothian, and A. Y. Cho, “Wet chemical and plasma etching of Ga2O3(Gd2O3),” Journal of The Electrochemical Society, 144, L239 (1997). DOI: 10.1149/1.1837929 [49]C. L. Freeman, F. Claeyssens, N. L. Allan, and J. H. Harding, “Graphitic Nanofilms as Precursors toWurtzite Films: Theory,” Physical Review Letters, 96, 066102 (2006). DOI: 10.1103/PhysRevLett.96.066102
本論文係以第一原理(First-principles)密度泛函理論(Density functional theory, DFT)研究烏采結構氮化鎵薄膜異質磊晶成長於六方最密堆積結構氧化釓基板與立方晶系結構氧化鈧基板異質界面之界面能,並透過分析GaN(0001)/Gd2O3(0001)與GaN(0001)/Sc2O3(111)最穩定異質界面模型以研究氮化鎵薄膜在界面處之原子排列。在GaN(0001)/Gd2O3(0001)異質界面之界面能研究中,最穩定界面結構鍵結為N-Gd鍵與Ga-O鍵,且在Ga-rich與O-rich化學氣氛下之Ga-polar GaN磊晶成長在O-terminated Gd2O3上有最低界面能−0.063 eV/A2,而磊晶於氧化釓基板上之氮化鎵在界面處形成類石墨結構,使氮化鎵釋放15%的拉伸應變並形成穩定界面結構成長在氧化釓基板上。在GaN(0001)/Sc2O3(111)異質界面之界面能研究中,GaN(0001)/Sc2O3(111)異質結構在Ga-rich與O-rich化學氣氛環境下,且氮化鎵極性生長方向為Ga-polar GaN生長在O-terminated Sc2O3上之情況有最低界面能−0.159 eV/A2,其界面處鍵結為N-Sc鍵與Ga-O鍵,且氮化鎵原子在界面處排列形成類石墨結構,能有效緩解氮化鎵薄膜與氧化鈧基板之間的7%晶格不匹配,使我們得到高品質氮化鎵磊晶薄膜。

In this work, the heteroepitaxial growths of wurtzite GaN(0001) on hcp Gd2O3(0001) and cubic Sc2O3(111) substrates were studied by doing the first-principles calculations. For Ga-polar GaN grown on O-terminated Gd2O3 under Ga-rich and O-rich ambients, the interface energy of GaN(0001)/Gd2O3(0001) heterojunction would have a minimal value of −0.063 eV/A2 while N−Gd and Ga−O bonds are present in the interface structure. The strain relaxation on heteroepitaxial interface is induced by turning GaN into graphitic-like structure. The other half of this work indicates that GaN(0001)/Sc2O3(111) heterostructure possesses of the lowest energy of −0.159 eV/A2 when Ga-polar GaN is grown on O-terminated Sc2O3 and N−Sc and Ga−O bonds create the interface structure. Like GaN grown on Gd2O3, it’s graphitic-like structure helps in relaxing the interfacial strain as grown on Sc2O3 substrate.
其他識別: U0005-0207201317225200
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.