Please use this identifier to cite or link to this item:
標題: 氮化鎵/氧化鋁酸鋰與氮化鎵/氧化鎵酸鋰異質界面結構之第一原理研究
Ab-initio Study of GaN(1-100)/LiAlO2(100) and GaN(1-100)/LiGaO2(100Heterostructures
作者: 周彥廷
Chou, Yen-Ting
關鍵字: 第一原理;First-principles calculations;價帶偏移;氮化鎵;氧化鋁酸鋰;氧化鎵酸鋰;GaN;LiAlO2;LiGaO2;valence band offset
出版社: 精密工程學系所
引用: [1] [2]H. Amano, I. Akasaki, K. Hiramatsu, N. Koide and N. Sawaki, “Effects of the Buffer Layer in Metalorganic Vapour Phase epitaxy of GaN on Sapphire Substrate,” Thin Solid Films, Vol. 163, pp. 415, 1988. DOI:10.1016/0040-6090(88)90458-0 [3]S. Nakamura, “GaN Growth Using GaN Buffer layer,” Japanese Journal of Applied Physics, Vol. 30, pp. L1705, 1991. DOI: 10.1143/JJAP.30.L1705 [4]S. Nakamura, M. Senoh, and T. Mukai, “Highly P-Typed Mg-Doprd GaN Films Grown with GaN Buffer Layers,” Japanese Journal of Applied Physics, Vol. 30, pp. L1708, 1991. DOI: 10.1143/JJAP.30.L1708 [5]D. C. Look and R. J. Molnar, “Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements,” Applied Physics Letters, Vol. 70, pp. 3377, 1997. DOI: 10.1063/1.119176 [6]B. Liu, J. Y. Kong, R. Zhang, Z. L. Xie, D. Y. Fu, X. Q. Xiu, P. Chen, H. Lu, P. Han, Y. D. Zheng, and S. M. Zhou, “Polarization, and temperature dependence of photoluminescence of m-plane GaN grown on γ-LiAlO2(100) structure,” Applied Physics. Letters, Vol. 95, pp. 061905, 2009. DOI: 10.1063/1.3204453 [7]P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, and J. Menniger, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature, Vol. 406, pp. 865, 2000. DOI:10.1038/35022529 [8]K. R. Wang, M. Ramsteiner, C. Mauder, Q. Wan, T. Hen-tschel, H. T. Grahn, H. Kalisch, M.Heuken, R. H. Janse-sen, and A. Trampert, “Striated surface morphology and crystal orientation of m-plane GaN films grown onγ-LiAlO2(100),” Applied. Physics. Letters., Vol. 96, pp. 231914, 2010. DOI:10.1063/1.3449133 [9]P. Waltereit, O. Brandt, M.Ramsteiner, R. Uecker, P. Reiche, and K.H. Ploog, “Growth of M-plane GaN( ) on γ-LiAlO2(100)”, Journal of Crystal Growth, Vol. 218, pp. 143, 2000. DOI:S0022-0248(00)00605-9 [10]M. M. C. Chou, D. R. Hang, L. Chang, C. Chen, W. F. Yang, C. -A. Li, and J. –J. Wu, “Improved quality of nonpolar m-plane GaN[10-10] on LiAlO2 substrate using a modified chemical vapor deposition,” Applied. Physics. Letters, Vol.107, pp. 013502, 2010. DOI: 10.1063/1.3273493 [11]W. A. Doolittle, S.Kang, T. J. Kropewnicki, S. Stock, P. A. Kohl, and A. S. Brown, “MBE Growth of High Quality GaN on LiGaO2,” Journal of Electronic Materials, Vol. 27, pp. L58, 1998. [12]W. A. Doolittle, S. Kang, and A. Brown, “MBE growth of high quality GaN on LiGaO2 for high frequency high power electronic applications,” Solid State Electronics, Vol. 44, pp 229, 2000. DOI:10.1016/S0038-1101(99)00228-2 [13]K. Xu, P. Deng, J. Xu, G. Zhou, W. Liu, and Y. Tian, “Growth and characterization of LiGaO2 substrate crystal for GaN epitaxy,” Journal of Crystal Growth, Vol. 216, pp. 343, 2000. DOI:10.1016/S0022-0248(00)00417-6 [14] R. Schuber, M. M. C. Chou, P. Vincze, T. Schimmel, and D. M. Schaadt, “Growth of A-plane GaN on (010)LiGaO2 by plasma-assisted MBE,” Journal of Crystal Growth, Vol. 312, pp. 1665, 2010. DOI:10.1016/j.jcrysgro.2010.02.030 [15]G. Li, S. Muc, and S. J. Shihb, “Achieving atomically flat surfaces for LiGaO2 substrates for epitaxial growth of GaN films,” Materials Science and Engineering B-Advanced Functional Solid-State Materials, Vol. 170, pp. 9, 2010. DOI:10.1016/j.mseb.2010.01.064 [16]Y. Takagaki, Y. J. Sun, O. Brandt, and K. H. Ploog, “Strain relaxation in AlN/GaN bilayer films grown on γ-LiAlO2(100) for nanoelectromechanical systems,” Applied. Physics. Letters, Vol. 84, pp. 4756, 2004. DOI: 10.1063/1.1751224 [17]T. Ishii, Y. Tazoh, and S. Miyazawa, “Single-crystal growth of LiGaO2 for a substrate of GaN thin films,” Journal of Crystal Growth, Vol. 186, pp. 409, 1998. DOI:10.1063/1.3449133 [18]C. H. Shih, T. H. Huang, R. Schuber, Y. L. Chen, L. Chang, I. Lo, M. M. Chou, and D. M. Schaadt, “Microstructure of non-polar GaN on LiGaO2 grown by plasma-assisted MBE,” Nanoscale Research Letters, Vol. 6, pp. 425, 2011. DOI:10.1186/1556-276X-6-425 [19]C. G. Van de Walle and R. M. Martin, “Theoretical study of band offsets at semiconductor interfaces,” Physical Review B, Vol. 35, pp. 8154, 1987-II. DOI:10.1103/PhysRevB.35.8154 [20]N. E. Christensen, “Possibility of heterostructure band offsets as bulk properties:Transitivity rule and orientation effects,” Physical Review B, Vol. 15, pp. 12687, 1988-I. DOI:10.1103/PhysRevB.38.12687 [21]S. L. Feng, J. Krynicki, V. Donchevt, J. C. Bourgoin, M. D. F. Poisson, C. Brylinski, S. Delage, H. Blanck, and S. Alaya, “Band offset of GaAs-GaInP heterojunctions,” Semiconductor Science and Technology, Vol. 8, pp. 2092, 1993. DOI:10.1088/0268-1242/8/12/010 [22]J. Junquera, M. Zimmer, P. Ordejon, and P. Ghosez, “First-principles calculation of the band offset at BaO/BaTiO3 and SrO/SrTiO3 interfaces,” Physical Review B, Vol. 67, pp. 155327, 2003. DOI: 10.1103/PhysRevB.67.155327 [23]R. Puthenkovilakam, E. A. Carter, J. P. Chang, “First-principles exploration of alternative gate dielectrics: Electronic structure of ZrO2/Si and ZrSiO4/Si interfaces,” Physical Review B, Vol.69, pp. 155329, 2004. DOI: 10.1103/PhysRevB.69.155329 [24]G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, Vol. 54, pp. 11169, 1996. DOI:10.1103/PhysRevB.54.11169 [25]G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, Vol. 6, pp. 15, 1996. DOI:10.1016/0927-0256(96)00008-0 [26]G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” Journal of Physics: Condensed Matter, Vol. 6, pp. 8245, 1994. DOI:10.1088/0953-8984/6/40/015 [27]G. Kresse and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, Vol. 59, pp. 1758, 1999. DOI:10.1103/PhysRevB.59.1758 [28]J. I. Pankove, “Tunneling-assisted Photon Emission in Gallium Arsenide pn Junctions,” Physical Review Letters, Vol. 9, pp. 283, 1962. DOI:10.1103/PhysRevLett.9.283 [29]J. W. Gerlach, A. Hofmann, T. Hoche, and B. Rauschenbach, “Control of the crystalline quality of wurtzitic GaN films deposited on γ-LiAlO2 by ion-beam assisted molecular-beam epitaxy,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 257, pp. 315, 2007. DOI:10.1016/j.nimb.2007.01.025 [30]Y. K. Lee, S. W. Han, S. S. Lee, C. G. Kim, and Y. Kim, “The growth of β-LiGaO2 films using novel single precursors,” Journal of Crystal Growth, Vol. 226, pp. 481, 2001. DIO:10.1016/S0022-0248(01)01412-9 [31]K. Sakurada, A. Kobayashi, Y. Kawaguchi, J. Ohta, and H. Fujioka, “Low temperature epitaxial growth of GaN films on LiGaO2 substrates,” Applied Physics. Letters, Vol. 90, pp. 211913, 2007. DOI: 10.1063/1.2737928 [32]R. Juza and H. Hahn, “Uber die Nitride der Metalle der ersten Nebengruppen des periodischen Systems. Metallamide und Metallnitride. X. Mitteilung,” Zeitschrift Fur Anorganische und Allgemeine Chemie, Vol. 244, pp. 133, 1940. [33]H. P. Maruska and J. J. Tietjen, “The Preparation and Properties of Vapor-deposited Single-crystal-line GaN,” Applied Physics. Letters, Vol. 15, pp. 327, 1969. DOI: 10.1063/1.1652845 [34]S. Yoshida, S. Misawa, and S. Gonda, “Epitaxial growth of GaN/AIN heterostructures,” Journal of Vacuum Science & Technology B, Vol. 1, pp. 250, 1983. DOI: 10.1116/1.582496 [35]H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AIN buffer layer,” Applied Physics. Letters, Vol. 48, pp. 353, 1986. DOI: 10.1063/1.96549 [36]H. Okumura, K. Balakrishnan, H. Hamaguchi, T. Koizumi, S. Chichibu, H. Nakanishi, T. Nagatomo, and S. Yoshida, “Analysis of MBE growth mode for GaN epilayers by RHEED,” Journal of Crystal Growth, Vol. 189, pp. 364, 1988. DOI:10.1016/S0022-0248(98)00313-3 [37] Y. Cui, V. K. Lazorov, M. M. Goetz, H. Liu, D. P. Robertson, M. Gajdardziska-Josifovska, and L. Lia, “Cubic GaN formation in Mn/GaN multilayer films grown on 6H-SiC(0001),” Applied. Physics. Letters, Vol. 82, pp. 4666, 2003. DOI: 10.1063/1.1586455 [38]J. W. Yang, J. N. Kuznia, Q. C. Chen, M. Asif Khan, T. George, M. De Graef and S. Mahajan, “Temperature-mediated phase selection during growth of GaN on (111)A And (111)B GaAs substrates,” Applied. Physics. Letters, Vol. 67, pp. 3759, 1995. DOI: 10.1063/1.115374 [39]B. M. Shi, M. H. Xie, H. S. Wu, N. Wang, and S. Y. Tong, “Transition between wurtzite and zinc-blende GaN: An effect of deposition condition of molecular-beam epitaxy,” Applied. Physics. Letters, Vol. 89, pp. 151921, 2006. DOI: 10.1063/1.2360916 [40]M. Razeghi and M. Henini, Optoelectronic Devices:III-Nitrides, Kidlington, Oxford: Elsevier Ltd, pp. 10, 2004. [41]M. A. Mastro, O. M. Kryliouk, M. D. Reed, T. J. Anderson, A. Davydov, and A. Shapiro, “Thermal Stability of MOCVD and HVPE GaN Layers in H2, HCl, NH3 and N2,” Physica status solidi. A, Applications and materials science, Vol. 188, pp. 467, 2001. DOI: 10.1002/1521-396X(200111)188:1<467 [42]A. Hirako and K. Ohkawa, “Decomposition and Uniformity of Material Gases in GaN MOVPE,” Physica Status Solidi A-Applications and Materials Science, Vol. 194, pp. 489, 2002. DOI: 10.1002/1521-396X(200212)194:2<489 [43]B. Liu, R. Zhang, Z. L. Xie, C. X. Liu, J. Y. Kong, J. Yao, Q. J. Liu, Z. Zhang, D. Y. Fu, X. Q. Xiu, H. Lu, P. Chen, P. Han, S. L. Gu, Y. Shi, and Y. D. Zheng, “Nonpolar m-plane thin film GaN and InGaN/GaN light-emitting diodes on LiAlO2(100) substrates,” Applied. Physics. Letters, Vol. 91, pp. 253506, 2007. DOI: 10.1063/1.2825419 [44]X. Q. Shen, T. Ide, S. H. Cho, M. Shimizu, S. Hara, H. Okumura, S. Sonnda, and S. Shimizu, “Essential Change in Crystal Qualities of GaN Films by Controlling Lattice Polarity in Molecular Beam Epitaxy,” Japanese Journal of Applied Physics, Vol. 39, pp. L16, 2000. [45]Y. Kobayashi and N. Kobayashi, “Influence of N2 carrier gas on surface stoichiometry in GaN MOVPE studied by surface photoabsorption,” Journal of Crystal Growth, Vol. 189, pp. 301, 1998. DOI:10.1016/S0022-0248(98)00268-1 [46]W. C. Johnson, J. B. Parsons and M. C. Crew, “Nitrogen Compounds of Gallium III. Gallic Nitride,” The Journal of Physical Chemistry, Vol. 36, pp. 2651, 1932. DOI: 10.1021/j150340a015 [47]J. I. Pankove, “Luminescence in GaN,” Journal of Luminescence, Vol. 7, pp. 114, 1973. DOI:10.1016/0022-2313(73)90062-8 [48]S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlNcoated sapphire substrates,” Applied Physics Letters, Vol. 42, pp. 427, 1983. DOI: 10.1063/1.93952 [49]M. H. Willemann, Polymer-Supported Bridges for Multi-Finger AlGaN/GaN Heterojunction Field Effect Transistors (HFETs), VT Master''s Thesis, 2007, pp. 5. [50] B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Physical Review B, Vol. 10 pp. 676, 1974. DOI:10.1103/PhysRevB.10.676 [51]F. Yun, M. A. Reshchikov, K. Jones, P. Visconti, H. Morkoc, S. S. Park, and K. Y. Lee, “Electrical, structural, and optical characterization of freestanding GaN template grown by hydride vapor phase epitaxy,” Solid-State Electronics, Vol. 44, pp. 2225, 2000. DOI:10.1016/S0038-1101(00)00202-1 [52]M. Wrabacka, H. Shen, J. C. Carrano, T. Li, J. C. Campbell, M. J. Schurman, and I. T. Ferguson, “Time-resolved electroabsorption measurement of the electron velocity-field characteristic in GaN,” Applied Physics. Letters, Vol. 76, pp. 1155, 2000. DOI: 10.1063/1.125968 [53]G. Callsen, M. R. Wagner, T. Kure, J. S. Reparaz, M. Bugler, J. Brunnmeier, C. Nenstiel, and A. Hoffmann, “Optical signature of Mg-doped GaN: Transfer processes,” Physical Review B, Vol. 86, pp. 075207, 2012. DOI: 10.1103/PhysRevB.86.075207 [54]M. Feneberg, M. Roppischer, C. Cobet, N. Esser, J. Schormann, T. Schupp, D. J. As, F. Horich, J. Blasing, A. Krost, and R. Goldhahn, “Optical properties of cubic GaN from 1 to 20 eV,” Physical Review B, Vol. 85, pp. 155207, 2012. DOI:10.1103/PhysRevB.85.155207 [55]J. E Ayers, “Heteroepitaxy of Semiconductors Theory, Growth, and Characterization,” CRC Press, pp. 161, 2007. DOI: 10.1103/PhysRevB.85.155207 [56]G. Springholz, N. Frank, and G. Bauer, “The origin of surface roughening in attice-mismatched Frank van der Merwe type heteroepitaxy,” Thin Solid Films, Vol. 267, pp. 15, 1995. DOI:10.1016/0040-6090(95)06591-1 [57]Y. Y. Takamura, Z. T. Wang, Y. Fujikawa, T. Sakurai, Q. K. Xue, J. Tolle, P. L. Liu, A. V. G. Chizmeshya, J. Kouvetakis, and I. S. T. Tsong, “Surface and Interface Studies of GaN Epitaxy on Si(111) via ZrB2 Buffer Layers,” Physical Review Letters, Vol. 95, pp.266105, 2005. DOI: 10.1103/PhysRevLett.95.266105 [58]P. Kumar, M. Tuteja, M. Kesaria, U. V. Waghmare, and S. M. Shivaprasad, “Superstructure of self-aligned hexagonal GaN nanorods formed on nitrided Si(111) surface,” Applied Physics. Letters, Vol. 101, pp. 131605, 2012. DOI: 10.1063/1.4751986 [59]L. Liu, J. H. Edgar, “Substrates for gallium nitride epitaxy,” Materials Science and Engineering: R: Reports, Vol. 37, P. 61, 2002. [60]R. Hull, Properties of Crystalline Silicon, IET, pp. 91, 1999. [61]R. Hull, Properties of Crystalline Silicon, IET, pp. 155, 1999. [62]W. E. Beadle, J. C. C. Tsai, and R. D. Plummer, “Quick Reference Manual for Silicon Integrated Circuit Technology,” Wiley, pp. 1, 1985. [63]R. Hull, Properties of Crystalline Silicon, IET, pp. 165, 1999. [64]R. Hull, Properties of Crystalline Silicon, IET, pp. 153, 1999. [65]R. Hull, Properties of Crystalline Silicon, IET, pp. 98, 1999. [66]H. C. Casey, Devices for integrated circuits: silicon and III-V compound semiconductors, John Wiley, pp. 45, 1999. [67]R. Hull, Properties of Crystalline Silicon, IET, pp. 430, 1999. [68]Y. Dikme, M. Fieger, F. Jessen, A. Szymakowski, H. Kalisch, J. F. Woitok, P. van Gemmern, P. Javorka, M. Marso, N. Kaluza, R. H. Jansen, and M. Heuken, “Si(111) as alternative substrate for AlGaN/GaN HEMT,” Physica status solidi. C, Current topics in solid state physics, Vol. 0, pp. 2385, 2003. DOI:10.1002/pssc.200303493 [69]G. Q. Hua, X. Konga, L. Wana, Y. Q. Wanga, X. F. Duana, Y. Lu, and X. L. Liub, “Microstructure of GaN films grown on Si(111) substrates by metalorganic chemical vapor deposition,” Journal of Crystal Growth, Vol. 256, pp. 416, 2003. DOI:10.1016/S0022-0248(03)01368-X [70]S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, and H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, “High quality GaN grown on Si(111) by gas source molecular beam epitaxy with ammonia,” Applied Physics. Letters, Vol. 75, pp. 2073, 1999. DOI: 10.1063/1.124920 [71]K. Y. Zang, L. S. Wang, S. J. Chuaa, C. V. Thompsona, “Structural analysis of metalorganic chemical vapor deposited AIN nucleation layers on Si (111),” Journal of Crystal Growth, Vol. 268, pp. 515, 2004. DOI:10.1016/j.jcrysgro.2004.04.083 [72]S. A. Nikishin, V. G. Antipov, S. Francoeur, N. N. Faleev, G. A. Seryogin, V. A. Elyukhin, H. Temkin, T. I. Prokofyeva, M. Holtz, A. Konkar, and S. Zollner, “High-quality AlN grown on Si(111) by gas-source molecular-beam epitaxy with ammonia,” Applied Physics. Letters, Vol. 75, pp. 484, 1999. DOI: 10.1063/1.124423 [73]E. L. Kern, D. W. Hamil, H. W. Deem, and H. D. Sheets, “Thermal properties of beta silicon carbide from 20 to 2000 C,” Materials Research Bulletin, Vol. 4, pp. s25, 1964. [74]R. C. Weast and M. J. Astle, CRC Handbook of Chemistry and Physics, 66th Edition. CRC Press Boca Raton, pp. E-99, 1986. [75]G.L. Harris, Properties of Silicon Carbide, Inspec, pp. 8, 1995. [76]M. V. Koval''chuk, Kristallografiya, MK Periodica, Vol. 111, pp. 350, 1959. [77]G.L. Harris, Properties of Silicon Carbide, Inspec, pp. 9, 1995. [78]T. Sasaki and T. Matsuoka, “Substrate-polarity dependence of metal .. organic vapor phase epitaxy grown GaN on SiC,” Journal of Crystal Growth, Vol. 64, pp. 4531, 1986. DOI: 10.1063/1.341281 [79]F. A. Ponce, B. S. Krusor, J. S. Major, Jr., W. E. Plano, and D. F. Welch,“Microstructure of GaN epitaxy on SiC using AlN buffer layers,” Applied Physics. Letters, Vol. 67, pp. 410, 1995. DOI: 10.1063/1.114645 [80]W. D. C. Jr, Materials Science and Engineering:An Introduction, Wiley, 1999. [81]Y. M. Li, B. F. Fieselmann, and A. Catalano, Amorphous and crystalline silicon carbide IV, Springer-Verlag, 1992, Vol. 77, pp. 229. [82]D. Doppalapudi, E. Iliopoulos, S. N. Basu, and T. D. Moustakas, “Epitaxial growth of gallium nitride thin films on A-plane sapphire by molecular beam epitaxy,” Journal of Applied Physics, Vol. 85, pp. 3582, 1999. DOI: 10.1063/1.369718 [83]T. Lei, K. F. Ludwig, T. D. Moustakas, “Heteroepitaxy, polymorphism, and faulting in GaN thin films on silicon and sapphire substrates,” Journal of Applied Physics, Vol. 74, pp. 4430, 1993. DOI: 10.1063/1.354414 [84]H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Applied Physics. Letters, Vol. 74, pp. 1036, 1999. [85]Z. Weyberg, Zbl. Mineralog, pp. 645, 1906. [86]M. Marezio, “The crystal structure and anomalous dispersion of LiAlO2,” Acta Crystallographica, Vol. 19, pp. 396, 1965. DOI: 10.1107/S0365110X65003511 [87]H. A. Lehmann, H. Hesselbarth, “Zur Kenntnis der Lithiumaluminate. I. Uber eine neue Modifikation des LiAlO2,” Zeitschrift Fur Anorganische und Allgemeine Chemie, Vol. 313, pp.117. 1961. DOI: 10.1002/zaac.19613130110 [88]A. P. de Kroon, G. W. Schafer1, and F. Aldinger, “Crystallography of potassium aluminate K2O‧Al2O3,” Journal of Alloys and Compounds, Vol. 314, pp. 147, 2001. DOI:10.1016/S0925-8388(00)01239-1 [89]W. Wong-Ng, H. McMurdie, B. Paretzkin, C. Hubbard, and A. Dragoo, “Standard X-Ray Diffraction Powder Patterns of Sixteen Ceramic Phases,” Powder Diffraction, Vol. 2, pp. 191, 1987. [90]M. Marezio and J. P. Remeika, “High Pressure Synthesis and Crystal Structure of α-LiAlO2,” Journal of Chemical Physics, Vol. 44, pp. 3143, 1966. DOI: 10.1063/1.1727203 [91]J. Thery and A. M. Lejus and D. Briancon, Structure and Properties of Alkaline Aluminates, Collongues. R. Bull. Soc. Chim. France, 1961, pp. 973. [92]M. Marezio, “The Crystal Structure of LiGaO2,” Acta Crystallographica. Vol. 48, pp. 481, 1965. DOI: 10.1107/S0365110X65001068 [93]C. H. Chang and J. L. Margrave, “High-Pressure-High-Temperature Syntheses. III. Direct Syntheses of New High-pressure Forms of LiA1O2, and LiGaO2 and Polymorphism in LiMO2 Compounds (M = B, Al, Ga),” Journal of The American Chemical Society, Vol. 90, pp. 2020, 1968. DOI: 10.1021/ja01010a018 [94]J. Evans, J. T. Gauntlett, and W. Levason,” Characterization of nickel(II)-nickel(IV) linear chain compounds by nickel and chlorine K-edge EXAFS,” Inorganic Chemistry, Vol. 27, pp.4521, 1988. DOI: 10.1021/ic00298a001 [95]R. Famery, F. Queyroux, J. C. Gilles, and P. Herpin, “Etude structurale de la forme ordonnee de LiAl5O8,” Journal of Solid State Chemistry, Vol. 30, pp. 257, 1979. DOI: 10.1016/0022-4596(79)90107-5 [96]P. Hagenmuller, L.C. Bebray, Comptes rendus hebdomadaires des seances de, T250, pp. 3847, 1960. [97] B. Cockayne and B. Lent, “THE Czochralski Growth of Single Crystal Lithium Aluminate, LiAlO2,” Journal of Crystal Growth, Vol. 54, pp. 546, 1981. DOI: 10.1016/0022-0248(81)90511-X [98]Y. J. Sun, O Brandt, U. Jahn, T. Y. Liu, A. Trampert,S. Cronenberg, S. Dhar, and K. H. Ploog, “Impact of nucleation conditions on the structural and optical properties of m-plane GaN(1-100) grown on γ-LiAlO2,” Journal of Applied Physics, Vol. 92, pp. 10. 2002. DOI: 10.1063/1.1513874 [99]J. W. Gerlach, A. Hofmann, T. Hoche, F. Frost, B. Rauschenbach, and G. Benndorf, “High-quality m-plane GaN thin films deposited on γ-LiAlO2 by ion-beam-assisted molecular-beam epitaxy,” Applied Physics Letters Vol. 88, pp. 011902, 2006. DOI: 10.1063/1.2159100 [100]T. Ishii, Y. Tazoh, and S. Miyazawa, “Single-crystal growth of LiGaO2 for a substrate of GaN thin films,” Journal of Crystal Growth, Vol. 186, pp. 409, 1998. DOI: 10.1016/S0022-0248(97)00510-1 [101]P. Kung, A. Saxler, X. Zhang, D. Walker, R. Lavado, and M. Razeghi, “Metalorganic chemical vapor deposition of monocrystalline GaN thin films on β-LiGaO2 substrates,” Applied Physics Letters Vol. 69, pp. 2116, 1996. DOI: 10.1063/1.116898 [102]R. Schuber, M. M. C. Chou, and D. M. Schaadt, “Growth of m-plane GaN on (100) LiGaO2 by plasma-assisted molecular beam epitaxy,” Thin Solid Films, Vol. 518, pp. 6773, 2010. DOI:10.1016/j.tsf.2010.06.031 [103]T. Ishii, Y. Tazoh, and S. Miyazawa, “LiGaO2 single crystal as a lattice-matched substrate,” Journal of Crystal Growth, Vol. 189, pp. 208, 1998. DOI:10.1016/S0022-0248(98)00232-2 [104]M. M. C. Chou, C. Chen, D. R. Hang, and W. Ting Yang, “Growth of nonpolar m-plane GaN epitaxial film on a lattice-matched (100) β-LiGaO2 substrate by chemical vapor deposition,” Thin Solid Films, Vol. 519, pp. 5066, 2011. DOI:10.1016/j.tsf.2011.01.129 [105]M. Dubois, D. Jimenez, P. L. de Andres, and S. Roche, “Multiscale modeling of Schottky-barrier MOSFETs with disilicide source/drain contacts: Role of contacts in the carrier injection,” Physical Review B, Vol. 76, pp. 115337, 2007. DOI: 10.1103/PhysRevB.76.115337 [106]K. L. Priddy, D. R. Kitchen, J. A. Grzyb, C. W. Litton, T. S. Henderson, C-K. Peng, W. F. Kopp, and H. Morkoc, “Design of Enhanced Schottky-Barrier AlGaAs/GaAs MODFET”s Using Highly Doped p+ Surface Layers,” IEEE Electron Device Letters, Vol. EDL-34, No. 2, 1987. DOI: 10.1109/T-ED.1987.22904 [107]M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and and S. Yamakoshi, “Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates, Applied Physics. Letters, Vol. 100, pp. 013504, 2012. DOI: 10.1063/1.3674287 [108]M. Peressi, N. Binggeli, and A. Baldereschi, “Band engineering at interfaces: the- ory and numerical experiments,” Journal of Physics D-applied physics, Vol. 31, pp. 1273, 1998. DOI:10.1088/0022-3727/31/11/002 [109] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical Review, Vol. 136, pp. B864, 1964. DOI:10.1103/PhysRev.136.B864 [110]W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,”Physical Review, Vol. 140, pp. A1133, 1965. DOI:10.1103/PhysRev.140.A1133 [111] M. Born and R. Oppenherimer, “Zur quantentheorie der molekeln,” Annalen der Physik, Vol. 389, pp. 457, 1927. DOI: 10.1002/andp.19273892002 [112]J. P. Perdew and W. Yue, “Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation,” Physical Review B, Vol. 33, pp. 8800, 2007. DOI:10.1103/PhysRevB.33.8800 [113] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Physical Review B, Vol. 45, pp. 13244, 1992. DOI:10.1103/PhysRevB.45.13244 [114]J. P. Perdew, K Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, Vol. 77, pp. 3865, 1996. DOI:10.1103/PhysRevLett.77.3865 [115]D. R. Hamalm, M. Schluter, and C. Chiang, “Norm-Conserving Pseudopotentials,” Physical Review Letters, Vol. 43, pp. 1494, 1979. DOI:10.1103/PhysRevLett.43.1494 [116]M. C. Payne, M. P. Teter, D. C. Ailan, T. A. Arias, and J. D. Joannopouios, “Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, pp. 1045, 1992. DOI:10.1103/RevModPhys.64.1045 [117]C. Liu, E. F. Chor, L. S. Tan, and Y. Dong, “Band offset measurements of the pulsed-laser-deposition-grown Sc2O3 (111)/GaN (0001) heterostructure by X-ray photoelectron spectroscopy,” Physica status solidi. C, Current topics in solid state physics, Vol. 4, pp. 2330, 2007. DOI 10.1002/pssc.200674702 [118]G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, Vol. 59, pp. 1758, 1999. DOI:10.1103/PhysRevB.59.1758 [119]Q. Yan, P. Rinke, M. Scheffler, and C. G. Van de Walle, “Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN,” Applied Physics Letters, Vol. 95, pp. 121111, 2009. DOI: 10.1063/1.3236533 [120]H. Schulz and K. H. Thiemann, “Crystal structure refinement of AlN and GaN,” Solid State Communications, Vol. 23, pp. 815, 1977. DOI: 10.1016/0038-1098(77)90959-0 [121]S. Q. Wua, Z.F. Hou, Z.Z. Zhu, “First-principles study on the structural, elastic, and electronic properties of γ-LiAlO2,” Computational Materials Science, Vol. 46, pp. 221, 2009. DOI:10.1016/j.commatsci.2009.02.028 [122]J. Bourue and R. L. Jacobs, “The band structure of GaN,” Journal of physics. C: Solid state physics, Vol. 5, pp. 3462, 1972. DOI:10.1088/0022-3719/5/24/008 [123]A. Balderechi, S. Baroni, and R. Resta, “Band Offsets in Lattice-Matched Herterojunctions: A Model and First-Principles Calculation for GaAs/AlAs,” Physical Review Letters, Vol. 61, pp. 734, 1988. DOI:10.1103/PhysRevLett.61.734 [124]P.-L. Liu, Y.-T. Chou and J.-Y. Hong, “The valence-band offset of m-plane GaN(1-100) films grown on LiAlO2(100) substrates,” Applied Physics Express, 2013. (Accept) [125]I. L. Azevedo, M. G. Morgan, and F. Morgan, “The transition to solid-state lighting,” Proceedings of the IEEE, Vol. 97, pp. 481, 2009. DOI: 10.1109/JPROC.2009.2013058 [126]A. Boonchun and W. R. L. Lambrecht, “First-principles study of the elasticity, piezoelectricity, and vibrational modes in LiGaO2 compared with ZnO and GaN,” Physical Review B, Vol. 81, pp. 235214, 2010. DOI:10.1103/PhysRevB.81.235214 [127]N. W. Johnson, J. A. McLeod and A. Moewes, “The electronic structure of lithium metagallate,” Journal of Physics-Condensed Matter, Vol. 23, pp. 445501, 2011. DOI:10.1088/0953-8984/23/44/445501
本研究係利用第一原理(Ab initio)計算氮化鎵(1-100)與氧化鋁酸鋰(100)以及氮化鎵(1-100)與氧化鎵酸鋰(100)之異質界面結構(Heterointerface structure),並分別探討氮化鎵/氧化鋁酸鋰異質界面與氮化鎵/氧化鎵酸鋰異質界面可能性並建立模型。我們由能帶偏移(Band offset)程度之大小對異質界面結構進行特性分析,最佳化之氮化鎵(1-100)與氧化鋁酸鋰(100)異質界面結構係以(1).配位數4之N原子、鍵結包括2個N─Ga鍵、1個N─Li鍵及1個N─Al鍵與(2).配位數4之Ga原子,鍵結包括2個Ga─N鍵、2個Ga─O鍵。另在最佳化之氮化鎵/氧化鎵酸鋰異質界面結構係以(1).配位數4之N原子,鍵結包括3個N─Ga鍵與1個N─Li鍵及(2).配位數4之Ga原子,鍵結包括2個Ga─N鍵、2個Ga─O鍵,由能帶偏移計算結果得出氮化鎵(1-100)與氧化鋁酸鋰(100)與氮化鎵(1-100)與氧化鎵酸鋰(100)最低值分別為0.534 eV與0.343 eV,證實能帶偏移量對於異質界面結構之原子鍵長改變量或異質界面應變量成正比關係。

First-principles calculations were used to determine the heterojunctions of GaN(1-100) films grown on LiAlO2(100) and LiGaO2(100) templates. The relative stability of eight different heteroepitaxial models for GaN(1-100)/LiAlO2(100) and GaN(1-100)/LiGaO2(100) interface is examined as a function of the valence band offset. The results show that the most favorable heterojunction has the lowest valence band offset of 0.534 eV and consists of fourfold-coordinated N (one N─Li, one N─Al and two N─Ga bonds) and Ga (two Ga─N and two Ga─O bonds). The relative stability of seven different heteroepitaxial models for GaN(1-100)/LiGaO2(100) interface is also examined as a function of the valence band offset. It is indicated that the most favorable heterojunction has the lowest valence band offset of 0.343 eV and consists of fourfold-coordinated N (one N─Li, three N─Ga bonds) and Ga (two Ga─N and two Ga─O bonds). Our simulations clearly show that valence band offsets are proportional to interfacial strain.
其他識別: U0005-0107201316515900
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.