Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4318
DC FieldValueLanguage
dc.contributor薛英家zh_TW
dc.contributor.author張肇恩zh_TW
dc.contributor.authorChang, Zhao-Enen_US
dc.contributor.other精密工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T06:27:32Z-
dc.date.available2014-06-06T06:27:32Z-
dc.identifierU0005-2108201313233100en_US
dc.identifier.citation1. Carpio, A., Bonilla, L. L., Juan, F. D. and Fernando, V., “Dislocations in graphene,” New Journal of Physics, vol. 10, no. 5, pp. 351-354, 2008. 2. Iijima, S., "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991. 3. Geim, A. K. and Novoselov, K. S., "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007. 4. Suk, J. W., Kitt, A., Cral, W. and Swan, A. K., “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” American Chemical Society, vol. 5, pp. 1946-1952, 2011. 5. Penuelas, J., Ouerghi, A., Lucot, D. and Gierak, J., “Surface morphology and characterization of thin graphene films on SiC vicinal substrate,” American Chemical Society, vol. 65, no. 3, pp. 837-855, 2009. 6. Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. and Stomer, H. L., “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, vol. 146, pp. 351-355, 2008. 7. Ghosh, S., Bao, W., Nika, D. L., Subrina, S. Pokatilov, E. P., Lau, C. N. and Balandin, A. A., “Dimensional crossover of thermal transport in few-layer graphene,” Nature Materials, pp. 555-558, 2010. 8. The Royal Swedish Acandemy of Sciences, GRAPHENE, 2010. 9. Robinson, J. T., Burgess, J. S. and Junkermeier, C. E., “Properties of fluorinated graphene films,” Nano Letters, pp. 3001-3005, 2010. 10. Kelly, B. T., Physics of graphite, London: Imperial College Press, 1991. 11. Kim, Y. S., Kumar, K., Fisher, F. T. and Yang, E. H., “Out-of-plane growth of CNTs on graphene for supercapacitor applications,” Nanotechnology, pp. 553-557, 2012. 12. Stankovich, S., Piner, R. D., Nguyen, S. T. and Ruoff, R. S., “ Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly,” Journal of Materials Chemistry, vol. 16, pp. 155-158, 2006. 13. Stankovich, S., Piner, R. D., Nguyen, S. T. and Ruoff, R. S., “Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets,” Carbon, vol. 44, pp. 3342-3347, 2006. 14. 蘇清源,石墨烯氧化物之特性與應用前景,物理專文,163-167,2011. 15. Park, Y. T., Ham, A. Y. and Grunlan, J. C., "Heating and acid doping thin film carbon nanotube assemblies for high transparency and low sheet resistance," Journal of Materials Chemistry, vol. 21, pp. 363-368, 2011. 16. Shin, C. J., Sharma, R., Han, J. H., Jin, Z., Shangchao, L. and Strano, M. S., “Bi- and trilayer graphene solutions,” Nature Nonotechnology, vol. 6, pp. 439-445, 2011. 17. Hernandez, Y., Nicolosi, V. and Lotya, M., “High-yield production of graphene by liquid phase exfoliation of graphite,” Nature Nanotech, vol. 3, pp. 563-568, 2008. 18. Decher, G., "Fuzzy Nanoassemblies : Toward Layered Polymeric Multicomposites," Science, vol. 277, no. 5330, pp. 1232-1237, 1997. 19. Lee, C. J., Park, J. H. and Park, J., "Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition," Chemical Physics Letters, vol. 323, pp. 560-565, 2000. 20. Li, X. S., Cai, W. W., Kim, S. and An, J., “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, vol. 324, pp. 1312-1314, 2009. 21. Wang, X., Zhang, L., Weber, P. K., Wang, H. and Guo, J., “N-Doping of graphene through electrothermal reactions with ammonia,” Science, vol. 324, pp. 768-771, 2009. 22. Wu, C. X., Dong, G. F. and Guan, I. H., “Production of graphene sheets by a simple helium arcdischarge,” Physica E, vol. 42, no. 5, pp. 1267-1271, 2010. 23. Dan, L., Muller, M. B., Gilje, S., Kaner, R. B. and Wallance, G. G., “Processable aqueous dispersions of graphene nanosheets,” Nature Nanotechnology, vol. 3, pp. 101-105, 2008.en_US
dc.identifier.urihttp://hdl.handle.net/11455/4318-
dc.description.abstract因石墨烯與奈米碳管具有優異的機械性質及高強度、高靭性、高硬度、高導熱性、高導電性等獨等性質,成為目前熱門的新興材料,其應用範圍相當廣泛,本研究探討石墨烯與奈米碳管的導電性在導電薄膜方面的探討。 三維的單層奈米碳管經過酸處理後,可得到類似石墨烯的二維平面晶體,本論文使用化學方式製備的石墨烯及酸處理單層奈米碳管,以逐層靜電吸附自我組裝(Layer-by-Layer, LBL)製程成膜,再以浸泡硝酸及加熱處理得到最佳化的導電性薄膜。 利用LBL可控制成膜層數的流程,選定不同層數的石墨烯及單層奈米碳管導電膜,經過優化處理得到最佳參數,再比較兩者之間的穿透度和片電阻。zh_TW
dc.description.abstractGrapheneand carbon nanotubes are the emerging reinforcement materials which haveexcellentmechanical properties and high strength, toughness, hardness, head conductivity and electric conductivity. Because of wide range of applications, in this study, we exploit the electric conductivity discussion of the conductive thin film. Thethree dimensions Single-walled Carbon Nanotubes (SWNTs) after acid treatment could be get a similar two-dimensional crystals of grephene. In this thesis,the conductive thin filmsof graphene by chemical method and SWNTs by acid treatmenthave coated throughLayer-by Layer process. Thin films were doped in the glass substrate through immersion acid and heat process to get the optimizing conductive. To exploit the thin film formation process coulbd be controlled by LBL method,soselectedthe difference of graphene and SWNTs films by LBL to get the optimal parameters after optimized process,and then compared the correlation between the transmittance and sheet resistance.en_US
dc.description.tableofcontents致謝 i 摘要 ii Abstract iii 表目錄 vii 圖目錄 viii 第一章 緒論 1 一、 前言 1 二、 研究動機與目的 1 第二章 文獻回顧 3 一、 石墨烯簡介 3 二、 石墨烯的特性 4 (一)導電性 4 (二)化學性質 5 (三)機械特性 6 (四)其它特性 6 三、 石墨烯製備方式 8 (一)固態法 8 1. 機械剝離法 8 2. 碳化矽(SiC)熱裂解法 8 (二)液態法 9 1. 氧化還原法 9 2. 超音波震盪法 10 3. 多層靜電吸附自我組裝(Layer-By-Layer, LBL) 11 4. 奈米碳管表面改質 13 5. 後處理-浸泡硝酸及加熱處理 15 (三)氣態法 15 1. 化學氣相沉積(Chemical vapor deposition, CVD)法 15 2. 電弧放電法 16 第三章 實驗設備與流程 17 一、 實驗材料與設備 17 (一)實驗材料 17 (二)實驗設備 20 (三)量測設備 23 二、 實驗流程 25 (一)氧化石墨烯的製備及還原 26 (二)奈米碳管改質方式 31 (三)多層靜電吸附自我組裝(Layer-By-Layer, LBL) 33 (四)後處理-浸泡硝酸及加熱處理 36 第四章 實驗結果與討論 37 一、 製備氧化石墨烯及石墨烯成品 37 二、 成膜試片導電性分析 40 (一)氧化石墨烯先鍍層再還原 40 (二)氧化石墨烯先還原再鍍層 41 (三)Smalley及Hummers酸化改質奈米碳管 43 三、 試片穿透度比較 44 四、 比較試片浸泡硝酸的導電性 45 五、 比較試片加熱後的導電性 46 六、 比較試片製程差異性 48 第五章 結論和未來展望 49 一、 結論 49 二、 未來展望 50 參考文獻 51zh_TW
dc.language.isozh_TWen_US
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108201313233100en_US
dc.subject石墨烯zh_TW
dc.subjectgrapheneen_US
dc.subject單層奈米碳管zh_TW
dc.subject導電膜zh_TW
dc.subject靜電吸附zh_TW
dc.subject自我組裝zh_TW
dc.subjectsingle-walled carbon nanotubesen_US
dc.subjectconductive thin film.en_US
dc.title石墨烯薄膜製程之研究zh_TW
dc.titleInvestigation of Thin Film Process of Graphene.en_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:精密工程研究所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.