Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4322
標題: 表面能量子計算方法之探討
Ab-initio Methods for Quantum Calculations on Surface Energies
作者: 張孝維
Chang, Hsiao-Wei
關鍵字: 第一原理;ab-initio;表面能;劈裂能;surface energy;cleavage energy
出版社: 精密工程學系所
引用: [1] D. Mijatovic, J. C. T. Eijkel, and A. Berg, “Technologies for nanofluidic systems: top-down vs. bottom-up—A review,” Lab on a Chip, Vol. 5, pp. 492, 2005. [2] B. K. Teo and X. H. Sun, “From top-down to bottom-up to hybrid nanotechnologies: Road to nanodevices,” Journal of Cluster Science, Vol. 17, pp. 529, 2006. [3] M. Wagemaker, F. M. Mulder, and A. V. Ven, “The role of surface and interface energy on phase stability of nanosized insertion compounds,” Advanced Materials, Vol. 21, pp. 2703, 2009. [4] F. D. Fischer, T. Waitz, D. Vollath, and N. K. Simha, “On the role of surface energy and surface stress in phase-transforming nanoparticles,” Progress in Materials Science, Vol. 53, pp. 481, 2008. [5] G. Ouyang, C. X. Wang, and G. W. Yang, “Surface energy of nanostructural materials with negative curvature and related size effects,” Chemical Reviews, Vol. 109, pp. 4221, 2009. [6] Z.Y. Zhou, N. Tian, J. T. Li, I. Broadwell, and S. G. Sun, “Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage,” Chemical Society Reviews, Vol. 40, pp. 4167, 2011. [7] V. A. Shchukin and D. Bimberg, “Spontaneous ordering of nanostructures on crystal surfaces,” Reviews of Modern Physics, Vol. 71, pp. 1125, 1999. [8] J. C. Boettger, “Nonconvergence of surface energies obtained from thin-film calculations,” Physical Review B, Vol. 49, pp. 16798, 1994. [9] S. P. Bates, G. Kresse, and M. J. Gillan, “A systematic study of the surface energetics and structure of TiO2(110) by first-principles calculations,” Surface Science, Vol. 385, pp. 386, 1997. [10] S. B. Zhang and S. H. Wei, “Surface energy and the common dangling bond rule for semiconductors,” Physical Review Letters, Vol. 92, pp. 086102, 2004. [11] X. Ma, W. Liu, X. Du, X. Liu, Z. Song, C. Lin, and P. K. Chu, “Germanium surface hydrophilicity and low-temperature Ge layer transfer by Ge–SiO2 bonding,” Journal of Vacuum Science and Technology B, Vol. 28, pp. 769, 2010. [12] X. Ma, C. Chen, W. Liu, X. Liu, X. Du, Z. Song, and C. Lin, “Study of the Ge wafer surface hydrophilicity after low-temperature plasma activation,” Journal of The Electrochemical Society, Vol. 156, pp. H307, 2009. [13] M. Junaid, C. –L. Hsiao, J. Palisaitis, J. Jensen, P. O. Å. Persson, L. Hultman, and J. Birch, “Electronic-grade GaN(0001)/Al2O3 grown by reactive DC-magnetron sputter epitaxy using a liquid Ga target,” Applied Physics Letters, Vol. 98, pp. 141915, 2011. [14] G. Kresse, O. Dulub, and U. Diebold, “Competing stabilization mechanism for the polar ZnO(0001)-Zn surface,” Physical Review B, Vol. 68, pp. 245409, 2003. [15] A. Wander and N.M. Harrison, “An ab-initio study of ZnO(11-20),” Surface Science, Vol. 468, pp. L851, 2000. [16] C. L. Freeman, F. Claeyssens, N. L. Allan, and J. H. Harding, “Graphitic nanofilms as precursors to wurtzite films: Theory,” Physical Review Letters, Vol. 96, pp. 066102, 2006. [17] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, Vol. 54, pp. 11169, 1996. [18] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, Vol. 6, pp. 15, 1996. [19] G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” Journal of Physics: Condensed Matter, Vol. 6, pp. 8245, 1994. [20] G. Kresse and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, Vol. 59, pp. 1758, 1999. [21] J. M. Zhang, F. Ma, and K. W. Xu, “Calculation of the surface energy of bcc metals by using the modified embedded-atom method,” Surface and Interface Analysis, Vol. 35, pp. 662, 2003. [22] J. M. Zhang, F. Ma, K. W. Xu, and X. T. Xin, “Anisotropy analysis of the surface energy of diamond cubic crystals,” Surface and Interface Analysis, Vol. 35, pp. 805, 2003. [23] J. M. Zhang, F. Ma, and K. W. Xu, “Calculation of the surface energy of FCC metals with modified embedded-atom method,” Applied Surface Science, Vol. 229, pp. 34, 2004. [24] J. M. Zhang, D.D. Wang, and K. W. Xu, “Calculation of the surface energy of hcp metals by using the modified embedded atom method,” Applied Surface Science, Vol. 253, pp. 2018, 2006. [25] P. L. Liu and Y. J. Siao, “Ab initio study on preferred growth of ZnO,” Scripta Materialia, Vol. 64, pp. 483, 2011. [26] D. P. Song, Y. C. Liang, M. J. Chen, and Q. S. Bai, “Molecular dynamics study on surface structure and surface energy of rutile TiO2(110),” Applied Surface Science, Vol. 255, pp. 5702, 2009. [27] D. P. Song, M. J. Chen, Y. C. Liang, C. Y. Wu, Z. J. Xie, and Q. S. Bai, “Molecular dynamics simulation study on surface structure and surface energy of anatase,” Modelling and Simulation in Materials Science and Engeering, Vol. 18, pp. 075002, 2010. [28] Y. J. Siao, P. L. Liu, and Y. T Wu, “Ab initio study of atomic hydrogen on ZnO surfaces,” Applied Physics Express, Vol. 4, pp. 125601, 2011. [29] A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, and N. M. Harrison, “Stability of polar oxide surfaces,” Physical Review Letters, Vol. 86, pp. 3811, 2001. [30] C. L. Freeman, F. Claeyssens, N. L. Allen, and J. H. Harding, “Thin films of wurtzite materials—AlN vs. AlP,” Journal of Crystal Growth, Vol. 294, pp. 111, 2006. [31] C. M. Fang, S. C. Parker, and G. With, “Atomistic simulation of the surface energy of spinel MgAl2O4,” Journal of the American Ceramic Society, Vol. 83, pp. 2082, 2000. [32] B. Meyer and D. Marx, “Density-functional study of the structure and stability of ZnO surfaces,” Physical Review B, Vol. 67, pp. 035403, 2003. [33] Y. A. Mastrikov, E. Heifets, E.A. Kotomin, and J. Maier, “Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces,” Surface Science, Vol. 603, pp. 326, 2009. [34] V. M. Bermudez, “The structure of low-index surfaces of β-Ga2O3,” Surface Science, Vol. 603, pp. 326, 2009. [35] T. He, J. L. Li, and G. W. Yang, “Physical origin of general oscillation of structure, surface energy, and electronic property in rutile TiO2 nanoslab,” ACS Applied Materials & Interfaces, Vol. 4, pp. 2192, 2012. [36] K. Hadidi, R. Hancke, T. Norby, A.E. Gunnæs, and O.M. Løvvik, “Atomistic study of LaNbO4; surface properties and hydrogen adsorption,” International Journal of Hydrogen Energy, Vol. 37, pp. 6674, 2012. [37] C. Xu, Y. Jiang, D. Yi, S. Sun, and Z. Yu, “Environment-dependent surface structures and stabilities of SnO2 from the first principles,” Journal of Applied Physics, Vol. 111, pp. 063504, 2012. [38] J. C. Boettger, “Persistent quantum-size effect in aluminum films up to twelve atoms thick,” Physical Review B, Vol. 53, pp. 13133, 1996. [39] D. K. Owens, E. I . Pont de Nemours, and Co., “Estimation of the surface free energy of polymers,” Journal of Applied Polymer Science, Vol. 13, pp. 1741, 1969. [40] A. Michiardia, C. Aparicioa, B. D. Ratnerb, J. A. Planella, and J. Gil, “The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces,” Biomaterials, Vol. 28, pp. 586, 2007. [41] M. Methfessel, D. Hennig, and M. SchefBer, “Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals,” Physical Review B, Vol. 46, pp. 4816, 1992. [42] K. Yamamoto, K. Kobayashi, H. Kawanowa, and R. Souda, “Difference in the outermost layer between TaB2(0001)…and HfB2(0001),” Physical Review B, Vol. 60, pp. 15617, 1999. [43] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical Review, Vol. 136(3B), pp. B864, 1964. [44] M. Born and R. Oppenherimer, “Zur quantentheorie der molekeln,” Annalen der Physik, Vol. 389, pp. 457, 1927. [45] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,”Physical Review, Vol. 140(4A), pp. A1133, 1965. [46] D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,”Physical Review B, Vol. 41, pp. 7892, 1990. [47] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Physical Review B, Vol. 45, pp. 13244, 1992. [48] J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, Vol. 46, pp. 6671, 1992. [49] J. P. Perdew, K Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, Vol. 77, pp. 3865, 1996. [50] M. Ernzerhof and G. E. Scuseria, “Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional,” Journal of Chemical Physics, Vol. 110, pp. 5029, 1999. [51] T.i Akatsua, C. Deguetb, L. Sanchezb, F. Alliberta, D. Rouchonb, T. Signamarcheixa, C. Richtarcha, A. Boussagola, V. Loupb, F. Mazenb, J. M. Hartmannb, Y. Campidellic, L. Clavelierb, F. Letertrea, N. Kernevezb, and Carlos Mazure, “Germanium-on-insulator (GeOI) substrates—A novel engineered substrate for future high performance devices,” Materials Science in Semiconductor Processing, Vol. 9, pp. 444, 2006. [52] G. K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator,” Journal of Applied Physics, Vol. 93, pp. 4955, 2003. [53] K. R. Jeon, C. Y. Park, and S. C. Shin, “Epitaxial growth of MgO and CoFe/MgO on Ge(001) substrates by molecular beam epitaxy,” Crystal Growth & Design, Vol. 10, pp. 1346, 2010. [54] P. D. Padova, J. P. Ayoub, I. Berbezier, P. Perfetti, C. Quaresima, A. M. Testa, D. Fiorani, B. Olivieri, and J. M. Mariot, “Mn0.06Ge0.94 diluted magnetic semiconductor epitaxially grown on Ge(001): Influence of Mn5Ge3 nanoscopic clusters on the electronic and magnetic properties,” Crystal Growth & Design, Vol. 10, pp. 1346, 2010. [55] V. Fiorentiniy and M Methfessel, “Extracting convergent surface energies from slab calculations,” Journal of Physics-Condensed Matter, Vol. 8, pp. 6525, 1996. [56] S. Nakamura, M. Senoh, and T. Mukai, “Highly p-typed Mg-doped GaN films grown with GaN buffer layers,” Japanese Journal of Applied Physics, Vol. 30, pp. L1708, 1991. [57] F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature, Vol. 386, pp. 351, 1997. [58] S. Chhajed, W. Lee, J. Cho, E. F. Schubert, and J. K. Kim, “Strong light extraction enhancement in GaInN light-emitting diodes by using self-organized nanoscale patterning of p-type GaN,” Applied Physics Letters, Vol. 98, pp. 071102, 2011. [59] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi. and Q. H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Applied Physics Letters, Vol. 87, pp. 203508, 2005.
摘要: 
本研究係基於量子物理探討表面能之計算方法,包括塊材能量近似法、能量增益近似法、能量適調近似法以及真空近似法等四種不同方法,並以Ge(001)薄膜表面能之收斂性及GaN(0001)/(000-1)薄膜劈裂能之收斂性進行分析比較。在Ge(001)薄膜表面能研究中,首先,我們由能量適調近似法計算Ge(001)薄膜表面能得到0.086 eV/Å2,而塊材能量近似法對Ge(001)薄膜表面能做估計時,Ge(001)薄膜表面能值會隨著薄膜層數增加逐漸趨於發散,能量增益近似法對Ge(001)薄膜表面能做估計時,藉由收斂的能量增益值所估計的表面能在層數上升時即達到與收斂值相一致的結果,真空近似法估計Ge(001)薄膜表面能時,當真空厚度大於5.77Å[約為Ge(001)薄膜厚度的0.25倍]時,所計算出的Ge(001)薄膜表面能已能達到與收斂值相同之結果。經比較能量增益近似法及真空近似法表面能計算結果,我們發現能量增益近似法及真空近似法所計算之Ge(001)薄膜表面能值均與能量適調近似法所得0.086 eV/Å2相一致。在GaN(0001)/(000-1)薄膜劈裂能研究中,我們由能量適調近似法計算GaN(0001)/(000-1)薄膜之劈裂能可得到0.363 eV/Å2,而塊材能量近似法對GaN(0001)/(000-1)薄膜劈裂能做估計時,GaN(0001)/(000-1)薄膜劈裂能會隨著薄膜層數增加趨近於與收斂值相等,藉由收斂的能量增益值所估計的GaN(0001)/(000-1)薄膜劈裂能會隨著薄膜層數增加趨近於與收斂值相等,利用真空近似法估計GaN(0001)/(000-1)的薄膜劈裂能時,當真空厚度為5.24Å[約為GaN(0001)/(000-1)薄膜厚度的0.5倍]以上時,所計算出的GaN(0001)/(000-1)薄膜劈裂能會與收斂值趨於相等。經比較塊材能量近似法、能量增益近似法及真空近似法之劈裂能計算結果,我們發現塊材能量近似法、能量增益近似法及真空近似法所估計的GaN(0001)/(000-1)薄膜劈裂能分別為0.370 eV/Å2、0.368 eV/Å2與0.369 eV/Å2。綜上所述,能量適調近似法與真空近似法皆適合用來估算Ge(001)薄膜表面能與GaN(0001)/(000-1)劈裂能,而真空近似法的優勢在估算Ge(001)薄膜表面能及GaN(0001)/(000-1)薄膜劈裂能時,僅需藉由少數模型計算即可達到與收斂值吻合的結果。

We conduct ab-initio calculations to estimate the convergence of the surface energies for Ge(001) thin films and the cleavage energies for GaN(0001)/(000-1) thin films by using the bulk-energy approach, incremental energy approach, energy fit approach and vacuum approach. The surface energy of Ge(001) thin films is 0.086 eV/Å2 calculated from the energy fit approach. The surface energies of Ge(001) thin films calculated from the bulk-energy approach diverge with increasing the slab thickness. The surface energies of Ge(001) thin films calculated from the incremental energy approach converge with increasing the slab thickness. The surface energies of Ge(001) thin films calculated from the vacuum approach are consistent with the convergent value of 0.086 eV/Å2, which the vacuum thickness is 5.77Å(0.25 times larger than slab thickness). We find that both the surface energies of Ge(001) thin films calculated from incremental energy approach and from vacuum approach are identical to the value of 0.086 eV/Å2, which is estimated from energy fit approach. The cleavage energy of GaN(0001)/(000-1) thin films is 0.363 eV/Å2 calculated from the energy fit approach. The cleavage energies of GaN(0001)/(000-1) thin films from the bulk-energy approach converge with increasing slab thickness. The cleavage energies of GaN(0001)/(000-1) thin films from the incremental energy approach converge with increasing slab thickness. The cleavage energies of GaN(0001)/(000-1) thin films calculated from vacuum approach are close to the convergent value, which the vacuum thickness is 5.24Å(0.5 times larger than slab thickness). The converged cleavage energies of GaN(0001)/(000-1) thin films calculated from the bulk-energy approach, incremental energy approach and vacuum approach are 0.370 eV/Å2, 0.368 eV/Å2 and 0.369 eV/Å2, respectively. Both the energy fit approach and the vacuum approach are suitable for estimating the surface energy of Ge(001) thin films and the cleavage energies of GaN(0001)/(000-1) thin films. The advantage of vacuum approach is few computational cost of the accuracy surface/cleavage energies for Ge(001) thin films and GaN(0001)/(000-1) thin films.
URI: http://hdl.handle.net/11455/4322
其他識別: U0005-2407201211581300
Appears in Collections:精密工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.