Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorWu, Tzung-Linen_US
dc.identifier.citation[1]R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum”, Proc. Phys. Soc., 18, 269-275 (1902). [2]U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces(sommerfeld’s waves)”, Journal of the optical society of America, Vol.31, Issue 3, 213-222 (1941). [3]R. H. Ritchie, “Plasma losses by fast electrons in thin films”, Phys.Rev., 106, 874-881 (1957). [4]A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection”, Z.Phys., 216, 398–410 (1968). [5]T. W. Eebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraodinary optical transmission through sub-wavelength hole arrays”, Nature, 391, 667-669 (1998). [6]J. N. Yih, Y. M. Chu, Y. C. Mao, W. H. Wang, F. C. Chien, K. L. Lee, P. K. Wei, and S. J. Chen, “Optical waveguide biosensors constructed with sub-wavelength gratings”, Applied Optics, Vol. 45, Issue 9, 1938-1942 (2006). [7]D. K. Cheng, ”Field and wave electromagnatics ”, Addison Wesley, 2nd edition (1989). [8]E. Hecht, “Optics”, Addison Wesley, 4th edition(2002). [9]陳錫桓,“光學、近代物理”,中央圖書出版社,第九版,2004年。 [10]M. A. Ordal, R. J. Bell, R. W. Alexander, Jr, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared:Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W”, Applied optics, Vol.24, No.24, 4493-4499 (1985) [11]P. B. Johnson and R. W. Christy, “Optical constants of the noble metals”, Phys. Rev.B, 6, 4370–4379(1972). [12]L. Novotny and B. Hecht, “Principles of Nano-Optics”, Cambridge University Press (2006). [13]邱國斌,蔡定平,“金屬表面電漿介紹”,物理雙月刊,二十八卷二期,472-485,2006年。 [14]E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasmaschwingugnen”, Z.Phys., Vol.241, 313-324 (1971). [15]S. A. Maier, “Plasmonics Fundamentals and Applications”, Springer (2007).en_US
dc.description.abstract電漿子光學(Plasmonics)是奈米光學中新興而發展迅速的研究課題,探討以表面電漿子(Surface plasmonics)作為光波能量傳遞的光學現象,其現象稱表面電漿共振(Surface plasmon resonance)是金屬與介電質介面的傳導電子,會在介面附近作集體振盪的行為,是近年來熱門的研究方向。 本研究利用有限元素法(Finite element method, FEM)模擬光柵耦合現象,在一般的研究中,僅考慮單一介質之情況,而本文採用不同的介質,發現可有效改變表面電漿之共振波長與強度,例如:在奈米光柵上填入介電質(ε = 1.0至3.0)與電磁波TM偏振入射的交互作用,比較其複合式奈米光柵與入射光的波長,發現填入的介電質,使原本奈米光柵的共振波長有位移30nm的能力,產生了藍位移或紅位移現象,且電場強度亦有1/4至2倍之變化影響,可得知填入的介電質與共振波長及電場是息息相關的,這可以應用在奈米光學元件之組成、生醫光電及奈米光學上檢測的應用。zh_TW
dc.description.abstractPlasmonics optics is a new and rapidly developing research topic in the nano-optics, investigating on the optical phenomenon of energy propagation in light waves through surface plasmon, called surface plasmon resonance. This phenomenon, in which conduction electrons between the metal and dielectric interface oscillate by the interface, is popular in recent research. This study simulate grating coupling phenomenon by using the finite element method. Only a single medium is considered in literature. Different media is adopted into simulation in this paper, discovering that different media can effectively change the resonance wavelength and intensity of surface plasmon. First of all, the dielectric ( ε = 1.0 to 3.0) is filled in the nano-grating. This dielectric will interact with electromagnetic waves of TM polarization incidence. Comparing the compound nano-grating and resonance wavelength, it is found that the filled-in dielectric causes a displacement of 30nm in the resonance wavelength of the original nano-grating, resulting in a blue shift or red shift, also with a 1/4 to 2 times change in electric field intensity. It is concluded that the dielectric is closely correlated to resonance wavelength and the electric field. This result can be applied to the composition of the nano-optical components, as well as detection in biophotonics and nano-optics.en_US
dc.description.tableofcontents摘要 i Abstract ii 目次 iii 表目次 v 圖目次 vi 第一章 序論 1 一、表面電漿之簡介與應用 1 二、研究動機 2 三、文獻回顧 3 四、論文架構與規劃 5 第二章 基本理論 6 一、Maxwell方程式 6 二、Fresnel方程式 11 三、全反射 17 四、金屬的光學性質 19 五、表面電漿子效應 26 (一)表面電漿子原理 26 1.稜鏡耦合激發 29 2.光柵耦合 32 (二)表面電漿子應用 34 六、有限元素法 35 七、完美匹配層 36 第三章 計算與模擬 39 一、理論計算 39 (一)光柵週期 39 二、模擬分析 51 (一)模擬流程 51 (二)模型建立 52 (三)模擬結果 54 1.金屬光柵之驗證 54 2.填入不同介電質ε (填滿) 60 第四章 結論與未來展望 70 參考文獻 71zh_TW
dc.subjectSurface plasmon resonanceen_US
dc.subjectFinite element methoden_US
dc.subjectBlue shiften_US
dc.subjectRed shiften_US
dc.titleStudy on the Surface Plasmon for a Compound Structure Nano-Period Gratingen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:精密工程研究所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.