Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4326
標題: 超音波鑽孔於陶瓷板之表面粗糙度最佳化參數研究
Optimization Study of Ultrasonic Horn to Ceramic Plates Surface Roughness
作者: 陳正陽
Chen, Cheng-Yang
關鍵字: 超音波設備;ultrasonic machining;變幅桿設計;田口分析;陶瓷;微鑽孔;表面精度;移除率;horn design;Taguchi analysis;ceramic;micro drill hole;Surface finish;MRR
出版社: 精密工程學系所
引用: [1] 陳永裕、潘華文,“壓電振動能源汲取器之分析與製作”, 大同大學 , 碩士論文 , 2010. [2] 田中義信等註、賴耿陽譯 , “精密加工新技術全集”, 復漢出版 , 1993. [3] G. August, S. Roland, “Ultrasonic machining” US-Patent 3090160, May 28,1963. [4] C. Andrew, “Ultrasonic motion adapter for a machine tool” US-Patent 3614484, Oct 19,1971. [5] C. Gerard, G. Roger, Dominique, H., Alain, T., “Machine for ultrasonic abrasion machining” US-Patent 4934103, June 19,1990. [6] E. David, H. Martin, “Ultrasonic cutting device” US-Patent 943405, Nov 22,1999. [7] L. Tao, C. Yanhong, M. Jan, “Development of a miniaturized piezoelectric ultrasonic transducer ” , IEEE Transactions on ultrasonic ferroelectrics and frequency control, Vol. 56, No. 3, pp. 649-659, 2009. [8] R. Ronald, S. Valley, NY, V. Dan, NJ. Clifton, “Ultrasonic horn” US-Patent 7004282, Feb 28,2006. [9] Y. Viond, D. Aniruddha, “Design of horn for rotary ultrasonic machining using the finite element method” , The International Journal of Advanced Manufacturing Technology, Vol. 39, No. 1-2, pp. 9-20, 2008. [10] S. Amini, H. Soleimanimehr, A. Abudollah, M. J. Nategh, “FEM analysis of ultrasonic-vibration-assisted turning and the vibratory tool” Journal of materials processing technology, Vol. 201, No. 1-3, pp. 43-47, 2008. [11] 王士榮、廖文賢、徐台生 ,“陶瓷材料迴轉超音波加工及粗糙度檢測分析”, 南亞學報 , 第27期 , pp43~52 , 2007. [12] 王士榮、廖文賢 ,“超音波加工與傳統加工切削條件對孔品質影響研究”, 南亞學報 , 第29期 , pp21~34 , 2009. [13] 王士榮、廖文賢 ,“具傾斜角度陶瓷材料之迴轉超音波加工”, 南亞學報 , 第30期 , pp15~34 , 2010. [14] 王士榮、廖文賢 ,“以超音波加工對抗彈陶瓷材料切削條件孔品質之研究”, 南亞學報 , 第31期 , pp31~48 , 2012. [15] 陳國亮、林紀勇 ,“振動磨削技術應用於陶瓷材料加工之研究”, 國立雲林科技大學 , 碩士論文 , 1995. [16] 顏炳華、林萬迪 ,“超音波振動輔助電泳沉積於石英微孔加工特性研究”, 國立雲林科技大學 , 碩士論文 , 2009.
摘要: 
本文旨探索超音波變幅桿鑽孔參數在陶瓷板孔壁之表面粗糙度。並使用有限元素分析方法來模擬各種平板和變幅桿的自然頻率。在實驗參數包括進給速率,每刃進給,超聲功率來取得最佳化測試結果。 孔壁表面的表面粗糙度採用雷射位移計進行量測。有限元素分析模擬不銹鋼變幅桿軸向振動自然頻率為 21.4 KHz。實驗測試不銹鋼軸向自然頻率為 21.913 KHz。模擬與實驗之間只有相差 2.3%。實驗採用刀具 ψ1000 μm 進行鑽孔與孔壁表面粗糙度檢查最佳參數,是使用進給速率10mm /min,每刃進給0.1mm/刃,和超音功率為99%時,所取得孔壁表面粗糙度為 Ra 1.49μm。 這項研究是實用於超音波變幅桿在平板上之鑽孔。

This thesis aims to explore the ultrasonic horn processing parameters effect on the hole wall surface roughness of ceramic plates. The finite element analysis (FEA) method was used to simulate natural frequencies of various plates and horns. Experimental parameters including feed rate, feed flute, ultrasonic power were tested for the optimal result. The surface roughness of hole wall surface was measured by a laser displacement instrument. Stainless steel horn with natural frequency in axial vibration mode was 21.4 KHz from the FEA simulation. The experimental measurement showed that the stainless steel horn is 21.913 KHz. There is only 2.3% difference between the simulation and experiment. The experiment used the horn diameter ψ1000 μm to drill hole and examined the optimal parameter for wall surface roughness. The achieved wall surface roughness is Ra 1.49μm when using feed rate 10 mm/min, feed flute 0.1/mm, and ultrasonic power 99%. This study is practical for ultrasonic horn processing to drill holes on plates.
URI: http://hdl.handle.net/11455/4326
其他識別: U0005-0808201321143600
Appears in Collections:精密工程研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-102-5098075015-1.pdf2.32 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.