Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4328
標題: 電子構裝無鉛焊料受應力反應機械性質探討
Influence of Stress on the Growth of Interfacial Intermetallic Compounds Between Sn and Cu Substrates
作者: 胡天鎮
Hu, Tien-Chen
關鍵字: 銅-錫介金屬化合物;Copper-tin intermetallic formation;銲料擴散;solder diffusion;strained substrate intermetallic aging
出版社: 精密工程學系所
引用: [1] Morris, J.W., Jr., J.L. Freer Goldstein and Z. Mei in The Mechanics of Solder Alloy Interconnects, edited by D. Frear, H. Morgan, S. Burchett and J. Lau (ITP, New York, 1994), pp. 7-41. [2] Marshall, J.L., L. Ann Foster and J.A. Sees in The Mechanics of Solder Alloy Interconnects, edited by D. Frear, H. Morgan, S. Burchett and J. Lau (ITP, New York, 1994), pp. 42-86 [3] Pratt, R.E., E.I. Stromswold and D.J. Quesnel, IEEE Transactions Components, Packaging Manufacturing Technology, A 19, 134 (1996) [4] Suganuma, K., Curr. Opin. Solid State Materials Science 5, 55 (2001) [5] Suganuma, K., K.S. Kim and S.H. Huh, Proceedings 2001 International Symposium on Microelectronics, Baltimore, SPIE Vol.4587 (IMAPS, Washington, DC, 2001), pp. 529-534 [6] Moon, Z.W., W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, Journal Electronic Material 29, 1122 (2000). [7] Lewis, D., S.Allen, M. Notis and A. Scotch, Journal Electronic Material 31, 161 (2002). [8] Chromik, R.R. and E.J. Cotts in Electronic Packaging Materials Science IX, edited by S.K. Groothuis, P.S. Ho, K. Ishida and T. Wu (Mater. Res. Soc. Proc. 445, Pittsburgh, PA 1997), pp. 31-36. [9] P.L. Tu, Y.C. Chan, and J.K.L. Lai, IEEE Transactions Components Packaging T 20, 87 (1997) [10] W.J. Plumbridge, Solder Surface Mount Technology 8, 27 (1996). [11] Y.C. Chan, P.L. Tu, A.C.K. So, and J.K.L. Lai, IEEE Transactions Components Packaging B 20, 463 (1997) [12] S. L. Ngoh, W. Zhou, J. H. L. Pang, Journal Electronic Material Vol. 37, n12, pp. 1843-1850.(2008) [13] K.N. Tu, A.M. Gusak, and M. Lim, Journal of Applied Physics 93, 1335 (2003). [14] M.E. Ferguson, C.D. Fieselman, and M.A. Elkins, IEEE Transactions Components, Packaging C 20, 188 (1997) [15] P.A. Kramer and J.W. Morris Jr., Metall Materials Transactions A25, 1249 (1994). [16] W. Huang, O.A. Palusinski, and D.L. Dietrich, IEEE Transactions Advanced Packaging 23, 277 (1997). [17] H.-T. Lee, M.-H. Chen, H.-M. Jao, and T.-L. Liao, Materials Science and Engineering A-Struct. 358, 134 (2003). [18] P.L. Liu, Z. Xu, and J.K. Shang, Metall Materials Transactions A31A, 2857 (2000). [19] C.E. Ho, S.Y. Tsai, and C.R. Kao, IEEE Transactions Advanced Packaging 24, 493 (2001). [20] K. Jung and H. Conrad, Journal Electronic Material 30, 1303 (2001). [21] K.H. Prakash and T. Sritharan, Acta Material 49, 2481 (2001). [22] A. Zribi, A. Clark, L. Zavalij, P. Borgesen, and E.J. Cotts, Journal Electronic Material 30, 1157 (2001). [23] K. Zeng and K.N. Tu, Materials Science and Engineering Rep. 38, 55 (2002). [24] C.-W. Hwang and K. Suganuma, Materials Science and Engineering A-Struct. 373, 187 (2004). [25] H.K. Kim and K.N. Tu, Physical Review B 53, 16027 (1996). [26] J.-W. Yoon and S.-B. Jung, Journal of Alloy and Compounds 396, 122 (2005). [27] A. Kumar, M. He, and Z. Chen, Solder Surface Mount Technology 198, 283 (2005). [28] D.-G. Kim, J.-W. Kim, and S.-B. Jung, Materials Science and Engineering B-Solid 121, 204 (2005) [29] P.T. Vianco, J.J. Stephens, and J.A. Rejent, IEEE Transactions Components Packaging A 20, 478 (1997). [30] A. Zribi, R.R. Chromik, R. Presthus, J. Clum, K. Teed, L. Zavalij, J. DaVita, J. Tova, and E.J. Cotts, IEEE Transactions Advanced Packaging 49, 451 (1999). [31] H.L.J. Pang, K.H. Tan, X.Q. Shi, and Z.P. Wang, Materials Science and Engineering A-Struct. 307, 42 (2001). [32] P.G. Harris and K.S. Chaggar, Solder Surface Mount Technology 10, 38 (1998). [33] J.W. Jang, P.G. Kim, and K.N. Tu, Journal of Applied Physics 85, 8456 (1999). [34] F. Gua, J. Lee, S. Choi, J.P. Lucas, T.R. Bieler, and K.N. Subramanian, Journal Electronic Material 30, 1073 (2001). [35] K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, K. N. Tu, Journal of Applied Physics Vol. 97, 024508, pp. 1-8, (2005) [36] W. J. Choi, T. Y. Lee, K. N. Tu, N. Tamura, R. S. Celestre, A. A. MacDowell, Y. Y. Bong, L. Nguyen, George T. T. Sheng, Proceeding on Electronic Components and Technology Conference (2002) [37] The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA, 1997. [38] C.S. Chang, A. Oscilowski, and R.C. Bracken, IEEE Circuits Devices Mag. 14, 45 (1998). [39] R. Shukla, V. Murali, and A. Bhansali, Proc. IEEE Electronic Component and Technology Conference 945 (1999). [40] V.K. Nagesh, R. Peddada, S. Ramalingam, B. Sur, and A. Taiy, Proc. IEEE Electronic Component and Technology Conference 975 (1999). [41] C.Y. Liu, C. Chen, C.N. Liao, and K.N. Tu, Journal of Applied Physics Lett. 75, 58 (1999). [42] J.W. Jang, C.Y. Liu, P.G. Kim, K.N. Tu, A.K. Mal, D.R. Frear, Journal of Materials Reserch, Vol. 15, No. 8, pp.1679-1687, (2000) [43] D. Pierreux, A. Stesmans, R. J. Jaccodine, M. T. Lin, T. J. Delph, Microelectron. Eng., v 72, n 1-4, p 76-80, (2004) [44] R. R. Chromik and E.J. Cotts, in S.K. Groothuis, P.S. Ho, K. Ishida and T. Wu(Eds.), Electronic Packaging Materials Science IX, Boston, U.S.A., December, 1997, Materials Research Society Symposium Proceedings (1997), 31. [45] S. L. Ngoh, W. Zhou, J. H. L. Pang, Journal Electronic Material 37 (2008) 1843. [46] K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, K. N. Tu, Journal of Applied Physics 97 (2005) 1. [47] D. Pierreux, A. Stesmans, R.J. Jaccodine, M.-T. Lin, T.J. Delph, Microelectronic Engineering 72 (2004) 76. [48] A. Stesmans, D. Pierreux, R J Jaccodine, M.-T. Lin, T. J. Delph, Applied Physics Letters 82 (2003) 3038. [49] M.-T. Lin, T J Delph, R J Jaccodine, Journal of Materials Research 16 (2001) 728. [50] W.J. Tomlinson and A. Fullylove, Journal of Materials Science (21) (1992) 5777. [51] M. Onishi and H. Fujibuchi, Transactions Japan Institute of Metals 16 (1975) 539. [52] P. J. Kay and C.A. Mackay, Transactions of Institute of Mettal Finishing 54 (1976) 68. [53] R. R. Chromik, R.P. Vinci, S.L. Allen, and M.R. Notis, J. Mater. Res. 18 (2003) 2251. [54] L.C. Tsao, Journal of Alloys and Compounds 509 (2011) 8441. [55] D.Q. Yu and L. Wang, Journal of Alloys and Compounds 458 (2008) 542. [56] L.D. Chen, M.L. Huang, S.M. Zhou, Journal of Alloys and Compounds 504 (2010) 535. [57] W.C. Oliver and G.M. Pharr, Journal of Materials Reserch 7, 1564 (1992). [58] K.N. Tu and R.D. Thompson, Acta Metall 30 (1982) 947. [59] P.W. Atkins, Elements of Physical Chemistry, Oxford University Press, New York, 2000, p. 158.
摘要: 
本論文利用四點彎矩法研究基板的應變對於無鉛錫銅介金屬層形成所造成的影響,試件分別從四吋拋光矽晶圓及400 μm厚的銅片切割成27 mm × 5 mm之長條形,由於矽晶圓不導電因此先使用濺鍍機鍍上一層非常薄的黏結層,在黏結層和銅片上鍍上10 μm厚的銅金屬層,再分別鍍上35 μm厚的霧錫及亮錫於銅金屬層上,將試件模組放置於200 ℃的烘箱,給予試件拉、壓及無應變(±1.54 x 10-4, ±2.3 x 10-4 and ±3.46 x 10-4)並於不同的老化時間下觀察對IMC層之影響,經由SEM可以很清楚觀測各層之厚度,實驗結果顯示當霧錫受壓其IMC厚度增加,受拉則減少,另一方面,亮錫於受壓跟受拉狀態下IMC層皆增加,並發現於相同應變下亮錫的IMC厚度成長率高於霧錫,而且,對於不同的錫給予外加應變其IMC微結構也非常的不同。衍伸之以外加應變實驗量測對運用標準製程產生之的無鉛銲錫薄膜成型與擴散之影響,此研究測試之數據,能清楚對照微封裝製程使用的銲接薄膜材料,於應用過程中產生之材料受機械應力產生之行為及使用的相關性,對目前研究之各種不同配方之無鉛銲錫薄膜材料可靠性和各項實驗機械應力影響作分析。數據將可提供微製造時選用之無鉛銲錫薄膜材料的之參考,也對產品元件使用之可靠度分析提供一極有價值之研究。

This thesis presents the results from four point bending tests conducted to investigate the strained substrates effect on interfacial Cu-Sn inter-metallic compound (IMC) formation layer growth. The test specimens were cut into strips 27 mm in length and 5 mm in width from 4 inch double polished silicon wafers or 400 μm Cu substrate. A very thin adhesion layer was deposited onto the substrate using sputtering. A 10 μm thick copper layer was deposited on top of the adhesion layer using the electroplating method. Two types of tin samples (Matte and Bright) were tested. A 35 μm tin layer (Matte or Bright) was then deposited on top of the copper film. During the experiment a set of samples were placed into a furnace at 200 ℃. In-plane bending strain was applied to the samples under tension, compression and without strain. The IMC formation results affected by different substrate strain (1.54 x 10-4, 2.3 x 10-4 and 3.46 x 10-4) and different aging time is presented. The thickness of each phase (Cu3Sn) and (Cu6Sn5) could be observed clearly and separately in scanning electron microscope images. The IMC layer thickness was increased when the sample was under both compression strain and tension strain. The enhanced effect caused by the compressive substrate strain was more severe than that due to the tensile substrate strain. We hypothesize that the observed increase in IMC thickness is related to strain enhanced out-diffusion of Cu towards the solder and strain in the underlying lattice at the diffusion interface.
The results on intermetallic formation affected by different strain levels and aging time were presented. Both of tension and compression strain would affect the Cu/Sn IMC formation. The thickness of IMC was increased when Matte tin sample under compressive strain and decreased when Matte tin sample under tensile strain. On the other hand, the thickness of IMC was increased when Bright tin sample under both compression and tensile strain. We also observed the growth rate of IMC was faster in Bright tin under strain than in Matte tin. Moreover, the IMC micrograph structures from different tin sources present very differently under external strain during formation
URI: http://hdl.handle.net/11455/4328
其他識別: U0005-0908201317540100
Appears in Collections:精密工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.