Please use this identifier to cite or link to this item:
標題: 非對稱微透鏡陣列之製程設計與開發
Process Design and Development of Asymmetric Microlens Array
作者: 洪建欣
Hung, Chien-Hsin
關鍵字: 非對稱微透鏡陣列;asymmetric lens array;舉離法;斜向熱熔法;光控膜;lift-off method;oblique melting method;light-control film.
出版社: 精密工程學系所
引用: [1]Stern, M. B., and Jay, T. R., “Dry etching for coherent refractive microlens arrays,”Optical Engineering, Vol. 33, No. 11, pp.3547-3551,1994. [2]Popovic Z. D., Sprague, R. A., and Connell, G. A. N., “Technique for monolithic fabrication of microlens arrays,”Applied Optics, Vol. 27, pp. 1281-1284, 1988. [3]Xu Q., Yang, L., Shu, X., and Yang, G., “Step heat-forming method for expanding the N.A. range of refractive microlens,”Acta Optica Sinica,Vol. 18, pp. 1128-1133, 1933. [4]Jay, T. T., and Stern, M. B., “Preshaping photoresist for refractive microlens fabrication.”Optical Engineering, Vol. 33, pp. 3552-3555,1994. [5]Park, E. H., and Kim, J. K., and Kwon, Y. S., “Microlens for efficient coupling between LED and optical fiber,”IEEE Photon. Technol. Lett., vol. 11, pp. 439-441, 1999. [6]Cox, W. R., Chen, T. and Hayes, D., “Micro-optics fabrication by ink-jet printing,”Optics &Photonics News, Vol. 12, , pp. 32-35, 2001. [7]林盈妃,“非對稱微透鏡陣列設計製作研究”,碩士論文,國立中興大學,2010。 [8]Ezell, B., “Making microlens backlights grow Up,” Information Display, vol. 17, pp. 42-45, 2001. [9]陳燕儀、呂世源,“光學膜-光的魔術師”科學發展,vol. 414,pp. 62-67,2007。 [10]Yang, H., Chou, M. C., Yang, A., Mu. C. K. and Shyu, R. F., “Realization of fabricating microlens array in mass production,” Proc. SPIE, vol. 3739, pp. 178–185, 1999. [11]Yang, H., Pan, C. T. and Chou, M. C., “Ultra-fine machining tool/molds by LIGA Technology,” J. Micromech. Microeng., vol.11, pp. 94-99, 2001. [12]Daly, D., Steven, R. F., Hutley, M. C. and Davies, N., “Manufacture of microlenses by melting photoresist,” Meas. Sci. Technol., vol. 1, pp. 759-766, 1990. [13]Schilling, A., Merz, R., Ossmann, C. and Herzig, H. P., “Surface Profiles of Reflow Microlenses under the Influence of Surface Tension and Gravity,” Opt. Eng., vol. 39, pp. 2171-2176, 2000. [14]Lin, C. P., Yang, H. and Chao, C. K., “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng., vol. 13, pp. 775-781, 2003. [15] Yang, H., Chao, C. K., Wei, M. K. and Lin, C. P., “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng., vol. 14, pp. 1197-1204, 2004. [16]謝漢萍、黃乙白、蘇睦仁,“非對稱微透鏡陣列光控制薄膜在反射式液晶顯示器的應用”, 光學工程, vol. 79 , pp. 4-11,2002。 [17]Ko, F. J. and Shieh H. -P. D.,“Brightness and contrast enhancement of reflective liquid crystal displays by microlens array light control film” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 39, pp. 2647-2650, 2000. [18]Huang, Y. P., Chen, J. J., Ko, F. J. and Shieh H. -P. D., “Multidirectional asymmetrical microlens array light control film for improved image in reflective color liquid crystal displays” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 41, pp. 646-651, 2002. [19]Lin, T. W., Chen, C. F., Yang J. J. and Liao, Y. S., “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process” J. Micromech. Microeng. vol. 18, 2008. [20]Furmidge, C. G. L., “Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention” Journal of Colloid Science, 1962. [21]Bateni, A., Ababneh, A., Elliott, J. A. W., Neumann, A.W. and Amirfazli, A.,“Effect of gravity and electric field on shape and surface tension of drops” Advances in Space Research, vol. 36, pp. 64-69, 2005. [22]ElSherbini, A. I. and Jacobi, A. M., “Liquid drops on vertical and inclined surfaces I. An experimental study of drop geometry” Journal of Colloid and Interface Science, vol. 273, pp. 556-565, 2004. [23]Hung, S. Y., Lin, C. P., Yang, H. and Chang, Y. P., “Optimal design using thermal reflow and caulking for fabrication of gapless microlens array mold inserts,” Optical Engineering, vol. 46, pp. 043402-1~8, 2007. [24]Han, M., Lee, W., Lee, S. K. and Lee, S. S., “3D microfabrication with inclined/rotated UV lithography” Sensors and Actuators, A: Physical, vol. 111, pp. 14-20, 2004. [25]Huang, Y. J., Chang, T. L., Chou, H. P. and Lin, C. H., “A novel fabrication method for forming inclined groove-based microstructures using optical elements” Japanese Journal of Applied Physics, vol. 47, pp. 5287-5290, 2008. [26]Yoon, Y. K. and Allen, M. G., “Proximity mode inclined UV lithography” Solid-State Sensors, Actuators, and Microsystems Workshop Hilton Head Island, South Carolina, pp.4-8, 2006. [27]Hung, S. Y., Chen, S. N., Lin, C. P. and Yang, H., “The robust design for gapless microlens array fabrication using the incomplete developing and thermal reflow process,” Microwave and Optical Technology Letters, vol. 49, pp.23-29, 2007. [28]Hung, S. Y., Chao, C. K., Lin, T. H. and Lin, C. P., “Applying ANN/GA algorithm to optimize the high fill-factor microlens array fabrication using UV proximity printing process,” Journal of Micromechanics and Microengineering, vol. 15, pp. 2389-2397, 2005.

This study develops an asymmetric microlens array process applied to light-control films, through the lateral light collecting efficiency of liquid crystal displays can be enhanced and the glare issue generated in the viewing angle can be improved. The study proposed three different processes to produce the asymmetric microlens array, among which the first process adopts the lift-off method to form a raised or sunken copper based film on the wafer, then after the photoresist coating and exposure with the way of mask qlignment is done. Finally, the circular columns of photoresist are formed on the base after development. The copper metal film is used to change the contact area and contact pattern between the liquid photoresist and the base after the photoresist is fully melted, and then further change the liquid photoresist surface tension . After the wafer is face-down, laced and inclined, when the photoresist is melted, the copper film base can accurately control the bottom shape of the liquid photoresist. In addition, it can effectively prevent the liquid photoresist slippage, through which a high and small-radius-of-curvature asymmetric micro-lens array can be produced. The second process utilizes the oblique exposure and the developing method to produce an oblique photoresist column array with circular cross sections on the wafer, and then the wafer is face-down placed and inclined to produce an asymmetric micro-lens array through the incomplete melt method and the gravitational effect. The third process uses the lithography process and lift-off method firstly to prepare the first layer of metal columns, and then the second lithography is used to cover the photoresist on the first layer of metal columns through offset alignment exposure method. Since the hydrophobicity of the metal columns is greater than the base, the photoresist on the metal column will bulge to make it form an asymmetric microlens array in the melting process. These three processes can be used to produce the asymmetric lens array. However, the first process can produce the asymmetric micro-lens array with an offset angle of up to 55 �.
其他識別: U0005-1308201323531900
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.