Please use this identifier to cite or link to this item:
標題: InGaN-based light-emitting solar cells with a pattern-nanoporous p-type GaN/Mg layer
作者: Chen, K.T.
Lin, C.F.
Lin, C.M.
Yang, C.C.
Jiang, R.H.
關鍵字: InGaN-based optoelectronic device;Photoeletrochemical (PEC) process;leds
Project: Thin Solid Films
期刊/報告no:: Thin Solid Films, Volume 518, Issue 24, Page(s) 7377-7380.
InGaN-based light-emitting solar cells (LESCs) with a nanoporous micro-pattern array (NMPA) p-type GaN:Mg structures were fabricated through a photoeletrochemical (PEC) process. The photovoltaic property of these NMPA devices was analyzed. The higher light output power and light absorption properties were observed from the NMPA structure compared with the standard devices. The nanoporous structures acted as an anti-reflection layer to increase the light-coupling process at the light propagation surface. The light output power of the NMPA-LESCs had a 41% enhancement at 20-mA operating current, compared to standard LESCs (ST-LESCs). The peak external quantum efficiencies (EQE) were measured as the values of 42% (at 365 nm) and 27% (at 370 nm) for the NMPA-LESCs and the ST-LESCs structures, respectively. The photovoltaic device structure with the NMPA structure had the higher EQE at the ultraviolet (UV) region for higher efficiency nitride-based solar cell devices applications. (C) 2010 Elsevier B.V. All rights reserved.
ISSN: 0040-6090
DOI: 10.1016/j.tsf.2010.05.007
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.