Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/43746
DC FieldValueLanguage
dc.contributor.authorShiue, S.T.en_US
dc.contributor.author薛顯宗zh_TW
dc.contributor.authorChen, P.Y.en_US
dc.contributor.authorLee, R.H.en_US
dc.contributor.authorChen, T.S.en_US
dc.contributor.authorLin, H.Y.en_US
dc.date2010zh_TW
dc.date.accessioned2014-06-06T08:11:27Z-
dc.date.available2014-06-06T08:11:27Z-
dc.identifier.issn0257-8972zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/43746-
dc.description.abstractThe effects of deposition parameters on characteristics of carbon coatings on optical fibers prepared by thermal chemical vapor deposition are investigated. The deposition parameters are selected as follows. The CH(4)/(CH(4) + N(2)) ratio is in the range between 20% and 100%; the temperature is set from 1173 to 1248 K; the working pressure is arranged between 50 and 100 kPa, and the residence time is ranging from 1.47 to 7.37 s. The deposition rate, microstructure, and electrical resistivity of carbon coatings are measured. The low-temperature surface morphology of carbon-coated optical fibers is elucidated. Experimental results indicate that the deposition rate increases with increasing the CH(4)/(CH(4) + N(2)) ratio, deposition temperature, working pressure, and residence time. The activation energy (= 456 kJ/mol) of carbon deposition from methane was shown to correlate to the activation energy of methane dissociation. The deposition rate is proportional to about first-order of partial pressure of methane, and thus, the deposition process is mainly controlled by the process to create mono-carbon species in the carbon film. As the deposition rate increases, the size and number of particles on the carbon coating surface and electrical resistivity of carbon coatings increase, while the ordered degree, nano-crystallite size, and sp(2) carbon atoms of the carbon coatings decrease. Additionally, the low-temperature surface morphology of carbon coatings shows that as the carbon coating thickness is large enough to sustain the thermal loading, decreasing the deposition rate is good for producing hermetic optical fiber coatings. (C) 2010 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USzh_TW
dc.relationSurface & Coatings Technologyen_US
dc.relation.ispartofseriesSurface & Coatings Technology, Volume 205, Issue 3, Page(s) 780-786.en_US
dc.relation.urihttp://dx.doi.org/10.1016/j.surfcoat.2010.07.118en_US
dc.subjectThermal chemical vapor depositionen_US
dc.subjectCarbon coatingen_US
dc.subjectOptical fiberen_US
dc.subjectMicrostructureen_US
dc.subjectinduced stress voidsen_US
dc.subjectthin-filmsen_US
dc.subjectamorphous-carbonen_US
dc.subjectcvd carbonen_US
dc.subjectdiamonden_US
dc.subjectfilmsen_US
dc.subjectpyrocarbonen_US
dc.subjecttemperatureen_US
dc.subjectchemistryen_US
dc.subjectkineticsen_US
dc.subjectmethaneen_US
dc.titleEffects of deposition parameters on characteristics of carbon coatings on optical fibers prepared by thermal chemical vapor depositionen_US
dc.typeJournal Articlezh_TW
dc.identifier.doi10.1016/j.surfcoat.2010.07.118zh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeJournal Article-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.