Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/45048
標題: Analysis of electro-kinetic pumping efficiency through finite-length nano-scale surface-charged capillaries
作者: Chein, R.Y.
簡瑞與
Chen, H.J.
Liao, C.C.
關鍵字: Electro-kinetic pumping;Surface charge density;Electric double layer;Maximum pumping efficiency;Dimensionless Debye length;high-pressure;flow;separations;transport;monoliths;channels;liquids;devices
Project: Journal of Electroanalytical Chemistry
期刊/報告no:: Journal of Electroanalytical Chemistry, Volume 630, Issue 1-2, Page(s) 1-9.
摘要: 
Electro-kinetic pumping efficiency using a two-dimensional axisymmetrical model is numerically investigated. A finite-length nano-scale surface-charged cylindrical capillary with reservoirs connected at the capillary ends is considered as the physical domain. The Navier-Stokes, Laplace, Poisson and Nernst-Planck equations are solved simultaneously to obtain the fluid flow, electric potential distribution and ion concentration distribution in the physical domain. The pumping efficiency predicted using a one-dimensional model assuming an infinitely long channel, Boltzmann ion distribution and equal ionic electrical mobility is also carried out and compared with the two-dimensional result. It is found that the surface charge density and dimensionless Debye length (kappa a) magnitudes are the two parameters that determine the electro-kinetic pumping efficiency. The pumping efficiency is found to increase with the increase in surface charge density for KG in the 0.03-30 range. For all surface charge densities studied, higher maximum pumping efficiency can be obtained when the dimensionless Debye length (kappa a) is less than 2. That is, an electrical double layer (EDL) overlap effect enhances the pumping efficiency. In this kappa a range. the maximum pumping efficiency predicted by the two-dimensional model is higher than that predicted by the one-dimensional model. For kappa a greater than 2, the maximum pumping efficiency predicted from both the one and two-dimensional models agree well. This implies that the one-dimensional model is suitable only when the EDLs are not overlapped. (C) 2009 Elsevier B.V. All rights reserved.
URI: http://hdl.handle.net/11455/45048
ISSN: 1572-6657
DOI: 10.1016/j.jelechem.2009.01.025
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.