Please use this identifier to cite or link to this item:
標題: 應用於M-QAM正交分頻多工系統的改良型非互斥分割部份傳輸序列技術
A PTS Technique With Non-Disjoint Sub-Block Partitions in M-QAM OFDM Systems
作者: 杜承恩
Tu, Cheng-En
關鍵字: OFDM;正交分頻多工;PAPR;PTS;sub-block partition;峰均功率比值;部份傳輸序列;子區塊分割
出版社: 通訊工程研究所
引用: [1] L.J. Cimini, Jr., “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,”IEEE Trans. Commun., vol. 33, pp. 665-675, July 1985. [2] S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarricer transmission,”IEEE Wireless Commun., vol. 12, no. 2, pp. 56-65, Apr. 2005. [3] A. E. Jones, T. A. Wilkinson, and S. K. Barton, “Block coding scheme for reduction of peak to mean envelope pwoer ratio of multicarrier transmission scheme,” Elect. Lett., vol. 30, pp. 2098-2099, Dec. 1994. [4] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE Trans. Inform. Theory, vol. 45, pp. 2397-2417, Nov. 1999. [5] K.G. Paterson, “Generalized Reed-Muller codes and power control in OFDM modulation,” IEEE Trans. Inform. Theory, vol. 46, pp. 104-120, Jan. 2000. [6] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett., vol. 32, no. 22, pp. 2056-2057, 1996. [7] M. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett., vol. 5, pp. 239-241, June 2001. [8] H. Chen and H. Liang, “Combined selective mapping and binary cyclic codes for PAPR reduction in OFDM systems,” IEEE Trans. Wireless Commun., vol. 6, no. 10, pp. 3524-3528, Oct. 2007. [9] S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average pwoer ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol. 33, no. 5, pp. 368-369, 1997. [10] C. Tellambura, “Improved phase factor computation for the PAR reduction of an OFDM signal using PTS,” IEEE Commun. Lett., vol. 5, no. 4, pp. 135-137, Apr. 2001. [11] H. Chen and H. Liang, “PAPR reduction of OFDM signals using partial transmit sequences and Reed-Muller codes,” IEEE Commun. Lett., vol. 11, no. 6, pp. 528-530, June 2007. [12] L. J. Cimini, Jr. and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” IEEE Commun. Lett., vol. 4, no. 3, pp. 86-88, Mar. 2000. [13] Y.-R. Tsai and S.-J. Huang, “PTS with Non-Uniform Phase Factors for PAPR Reduction in OFDM Systems,” IEEE Commun. Lett., vol. 12, no. 1, pp. 20-22, Jan. 2008. [14] L. Litwin , “An introduction to multicarrier modulation,” IEEE Potentials, Volume: 19 Issue: 2, Apr/May 2000. [15] C. Tellambura, “Computation of the continuous-time PAR of an OFDM signal with BPSK subcarriers,“ IEEE Commun. Lett., vol. 5, pp. 185-187, Apr. 2001. [16] Seog Geun Kang, Jeong Goo Kim, Eon Kyeong Joo, “A novel subblock partition scheme for partial transmit sequence OFDM, “Broad. IEEE Trans. on., vol. 45, pp. 333 - 338, Sept. 1999. [17] S. Lin and D. J. Costello, Jr., Error Control Coding, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2004. [18] C. R¨oßing and V. Tarokh, ”A construction of OFDM 16-QAM sequences having low peak powers,” IEEE Trans. Inform. Theory, vol.47, no.5, pp.2091-2094, July 2001. [19] C. V. Chong and V. Tarokh, ”A simple encodable/decodable OFDM code with low peak-to-mean envelope power ratio,” IEEE Trans. Inform. Theory, vol.47, no.7, pp.3025-3029, Nov. 2001. [20] S. Lin and D. J. Costello, Jr., Error Control Coding. Englewood Cliffs, NJ: Prentice-Hall, 2004 [21] E. Costa and S. Pupolin, “M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise,” IEEE Trans. Commun. Theory, vol.50, no.3, pp.462-472, Mar. 2002.

A modified PTS algorithm by partitioning an OFDM block into non-disjoint OFDM sub-blocks is presented in this paper for PAPR reduction of M-QAM OFDM signals. Since a 16-QAM constellation can be written as sum of two QPSK sets, respectively four BPSK sets, a non-disjoint sub-block partition of the 16-QAM OFDM block is obtained by applying two different disjoint partitions on QPSK OFDM blocks, respectively four different disjoint partitions on BPSK OFDM blocks. Compared to a disjoint sub-block partition in conventional PTS, numerical results show that themodified PTS with a non-disjoint partition achieves an improvement of PAPR reduction and BER performance for interleaved, adjacent, and random partitioning schemes.
其他識別: U0005-3007200900322400
Appears in Collections:通訊工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.