Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorGuu-Chang Yangen_US
dc.contributorHsin-Ying Liangen_US
dc.contributor.advisorHou-Shou Chenen_US
dc.contributor.authorTu, Cheng-Enen_US
dc.identifier.citation[1] L.J. Cimini, Jr., “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,”IEEE Trans. Commun., vol. 33, pp. 665-675, July 1985. [2] S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarricer transmission,”IEEE Wireless Commun., vol. 12, no. 2, pp. 56-65, Apr. 2005. [3] A. E. Jones, T. A. Wilkinson, and S. K. Barton, “Block coding scheme for reduction of peak to mean envelope pwoer ratio of multicarrier transmission scheme,” Elect. Lett., vol. 30, pp. 2098-2099, Dec. 1994. [4] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE Trans. Inform. Theory, vol. 45, pp. 2397-2417, Nov. 1999. [5] K.G. Paterson, “Generalized Reed-Muller codes and power control in OFDM modulation,” IEEE Trans. Inform. Theory, vol. 46, pp. 104-120, Jan. 2000. [6] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Electron. Lett., vol. 32, no. 22, pp. 2056-2057, 1996. [7] M. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett., vol. 5, pp. 239-241, June 2001. [8] H. Chen and H. Liang, “Combined selective mapping and binary cyclic codes for PAPR reduction in OFDM systems,” IEEE Trans. Wireless Commun., vol. 6, no. 10, pp. 3524-3528, Oct. 2007. [9] S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average pwoer ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol. 33, no. 5, pp. 368-369, 1997. [10] C. Tellambura, “Improved phase factor computation for the PAR reduction of an OFDM signal using PTS,” IEEE Commun. Lett., vol. 5, no. 4, pp. 135-137, Apr. 2001. [11] H. Chen and H. Liang, “PAPR reduction of OFDM signals using partial transmit sequences and Reed-Muller codes,” IEEE Commun. Lett., vol. 11, no. 6, pp. 528-530, June 2007. [12] L. J. Cimini, Jr. and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” IEEE Commun. Lett., vol. 4, no. 3, pp. 86-88, Mar. 2000. [13] Y.-R. Tsai and S.-J. Huang, “PTS with Non-Uniform Phase Factors for PAPR Reduction in OFDM Systems,” IEEE Commun. Lett., vol. 12, no. 1, pp. 20-22, Jan. 2008. [14] L. Litwin , “An introduction to multicarrier modulation,” IEEE Potentials, Volume: 19 Issue: 2, Apr/May 2000. [15] C. Tellambura, “Computation of the continuous-time PAR of an OFDM signal with BPSK subcarriers,“ IEEE Commun. Lett., vol. 5, pp. 185-187, Apr. 2001. [16] Seog Geun Kang, Jeong Goo Kim, Eon Kyeong Joo, “A novel subblock partition scheme for partial transmit sequence OFDM, “Broad. IEEE Trans. on., vol. 45, pp. 333 - 338, Sept. 1999. [17] S. Lin and D. J. Costello, Jr., Error Control Coding, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2004. [18] C. R¨oßing and V. Tarokh, ”A construction of OFDM 16-QAM sequences having low peak powers,” IEEE Trans. Inform. Theory, vol.47, no.5, pp.2091-2094, July 2001. [19] C. V. Chong and V. Tarokh, ”A simple encodable/decodable OFDM code with low peak-to-mean envelope power ratio,” IEEE Trans. Inform. Theory, vol.47, no.7, pp.3025-3029, Nov. 2001. [20] S. Lin and D. J. Costello, Jr., Error Control Coding. Englewood Cliffs, NJ: Prentice-Hall, 2004 [21] E. Costa and S. Pupolin, “M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise,” IEEE Trans. Commun. Theory, vol.50, no.3, pp.462-472, Mar. 2002.zh_TW
dc.description.abstractA modified PTS algorithm by partitioning an OFDM block into non-disjoint OFDM sub-blocks is presented in this paper for PAPR reduction of M-QAM OFDM signals. Since a 16-QAM constellation can be written as sum of two QPSK sets, respectively four BPSK sets, a non-disjoint sub-block partition of the 16-QAM OFDM block is obtained by applying two different disjoint partitions on QPSK OFDM blocks, respectively four different disjoint partitions on BPSK OFDM blocks. Compared to a disjoint sub-block partition in conventional PTS, numerical results show that themodified PTS with a non-disjoint partition achieves an improvement of PAPR reduction and BER performance for interleaved, adjacent, and random partitioning schemes.en_US
dc.description.tableofcontents中文摘要 ii Abstract iii 第一章 前言 1 第二章 正交分頻多工 3 2.1 正交分頻多工簡介及原理 3 2.2 OFDM數學模型 5 2.3 保護區間(Guard Interval)與循環字首(Cyclic Prefix) 7 2.4 峰均比值(Peak to Average Power Ratio, PAPR)問題 8 第三章 部份傳輸序列(Partial Transmit Sequence) 12 3.1 部份傳輸序列原理 12 3.2 部份傳輸序列性質 14 3.3 具有錯誤控制特性的低複雜度部分傳輸序列 18 3.3.1 最小籬笆結構 18 3.3.2 最小籬笆結構結合部分傳輸序列 18 3.3.3 藉由最小籬笆結構搜尋權重向量 19 3.3.4 複雜度計算與分析 23 3.3.5 結合最小籬笆結構的模擬結果 24 第四章 改良型非互斥子區塊之部分傳輸序列 29 4.1 改良型非互斥分割子區塊 29 4.2 接收端架構 36 4.3 乘積碼簡介 37 4.3.1 乘積碼的結構與編碼方式 37 4.3.2 使用延伸漢明碼為單元碼的乘積碼 38 4.4 模擬結果與討論 39 第五章 結論 49 參考文獻 50zh_TW
dc.subjectsub-block partitionen_US
dc.titleA PTS Technique With Non-Disjoint Sub-Block Partitions in M-QAM OFDM Systemsen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:通訊工程研究所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.