Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4898
標題: 應用延伸里德所羅門碼光纖分碼多工系統之研究
Extended Reed-Solomon Codes for Optical CDMA Systems
作者: 李彥鋒
Li, Yen-Feng
關鍵字: 光纖分碼多工;optical code division multiple access;里德所羅門碼;循環碼;樹狀結構;Reed-Solomon codes;cyclic codes;tree structure
出版社: 通訊工程研究所
引用: [1] L. Tancevski and I. Andonovic, “Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security,” J. Lightw. Technol., vol. 14, no. 12, pp. 2636-2647, Dec. 1996. [2] G.-C. Yang and W. C. Kwong, “Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks,” IEEE Trans. Commun., vol. 45, no. 11, pp. 1426-1434, Nov. 1997. [3] G.-C. Yang and W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks, Artech House, Norwood, MA, 2002. [4] R. M. H. Yim, L. R. Chen, and J. Bajcsy, “Design and performance of 2-D codes for wavelength-time optical CDMA,” IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 714-716, May 2002. [5] W. C. Kwong, G.-C. Yang, V. Baby, C.-S. Brès, and P. R. Prucnal, “Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical CDMA,” IEEE Trans. Commun., vol. 53, no. 1, pp. 117-123, Jan. 2005. [6] C.-Y. Chang, G.-C. Yang and W. C. Kwong, “Wavelength-time codes with maximum cross-correlation function of two for multicode-keying optical CDMA,” J. Lightwave Technol., vol. 24, no. 3, pp. 1093-1100, March 2006. [7] E. L. Titlebaum and L. H. Sibul, “Time-Frequency Hop Signals Part II: Coding Based upon Quadratic Congruences,” IEEE Transactions on Aerospace and Electronic Sys-tems, vol. 17, no. 4, pp. 494-500, July 1981. [8] S. V. Maric and E. L. Titlebaum, “Frequency hop multiple access codes based upon the theory of cubic congruences,” IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 6, pp. 1035-1039, Nov. 1990. [9] S. V. Maric and E. L. Titlebaum, “A class of frequency hop codes with nearly ideal characteristics for use in multiple-access spread-spectrum communications and radar and sonar systems,” IEEE Trans. Commun., vol. 40, no. 9, pp. 1442-1447, Sept. 1992. [10] J.-H. Tien, G.-C. Yang, C.-Y. Chang, and W. C. Kwong, “Design and analysis of 2-D codes with the maximum cross-correlation value of two for optical CDMA,” J. Lightwave Technol., vol. 26, no. 22, pp. 3632-3639, Nov. 2008. [11] T.-C. Wang, G.-C. Yang, C.-Y. Chang, and W. C. Kwong, “A new family of 2-D codes for fiber-optic CDMA systems with and without the chip-synchronous assumption,” J. Lightwave Technol., vol. 27, no. 14, pp. 2612-2620, July 2009. [12] Y.-C. Lin, G.-C. Yang, C.-Y. Chang, and W. C. Kwong, “Construction of optimal 2D optical codes using optical orthogonal codes,” IEEE Trans. Commun., vol. 59, no. 1, pp. 194-200, July 2011. [13] C.-H. Hsieh, G.-C. Yang, C.-Y. Chang, and W. C. Kwong, “Multilevel prime codes for optical CDMA systems,” J. Opt. Commun. Netw., vol. 1, no. 7, pp. 600-607, Dec. 2009. [14] C.-C. Sun, G.-C. Yang, C.-P. Tu, C.-Y. Chang, and W. C. Kwong, “Extended multilevel prime codes for optical CDMA,” IEEE Trans. Commun., vol. 58, no. 5, pp. 1344-1350, May 2010. [15] I.S. Reed, “k-th Order Near-Orthogonal Codes,” IEEE Trans. Inform. Theory, vol. IT-15, pp 116-117, Jan. 1971. [16] V. C. Rocha, Jr., “Maximum Distance Separable Multilevel Codes,” IEEE Trans. Inform. Theory, vol. IT-30, no. 3, pp. 547-548, May 1984. [17] G.-C. Yang and J.-Y. Jaw, “Performance analysis and sequence designs of synchronous code-division multiple-access systems with multimedia services,” IEE Proceedings- Commun., vol. 141, no. 6, pp. 371, Dec. 1994. [18] S. Lin and D.J. Costello, Error Control coding: Fundamentals and Applications, 2nd ed., Upper Saddle River, NJ: Pearson Education, 2004. [19] N. Q. A, L. Györfi and J. L. Massey, “Constructions of Binary constant-weight cyclic codes and cyclically permutable codes,” IEEE Trans. Inform., vol. 38, no. 3, pp. 940-949, May. 1992. [20] H. Beyranvand, B.M. Ghaffari, and J.A. Salehi, “Multirate, differentiated-QoS, and multilevel fiber-optic CDMA system via optical logic gate elements,” J. Lightw. Technol., vol. 27, no. 19, pp. 4348–4359, Oct. 2009. [21] T.H. Shake, “Security performance of optical CDMA against eavesdropping,” J. Lightw. Technol., vol. 23, no. 2, pp. 655-670, Feb. 2005. [22] Z. Wang, L. Xu, J. Chang, T. Wang, and P.R. Prucnal, “Secure optical transmission in a point-to-point link with encrypted CDMA codes,” IEEE Photon. Technol. Lett., vol. 22, no. 19, pp. 1410–1412, Oct. 2010. [23] L. Tancevski and L.A. Rusch, “Impact of the beat noise on the performance of 2-D optical CDMA systems,” IEEE Commun. Lett.,vol. 4, no. 8, pp. 264-266, Aug. 2000. [24] J.-J. Chen and G.-C. Yang, “CDMA fiber-optic systems with optical hard limiters,” J. Lightw. Technol., vol. 19, no. 7, pp. 950-958, July 2001. [25] C.-C. Hsu, G.-C. Yang, and W. C. Kwong, “Hard-Limiting Performance Analysis of 2-D Optical Codes Under the Chip-Asynchronous Assumption,” IEEE Trans. Commun., vol. 56, no. 5, pp. 762-768, May 2008. [26] G.-C. Yang and T. Fuja, “Optical orthogonal codes with unequal auto- and cross-correlation constraints,” IEEE Trans. Inform. Theory, vol. 41, no. 1, pp. 96-106, Jan. 1995. [27] R. C. Bose and D. K. Ray-Chaudhuri, “On a Class of Error Correcting Binary Group Codes,” Inform. Control, vol. 3, pp. 68-79, March 1960.
摘要: 
在本篇論文中,我們藉由修改延伸里德所羅門碼,進而建構出一種應用於非同步光纖分碼多工系統之新式二維光纖碼。此新式二維光纖碼除了具有較多且近似最佳的碼總數量外,這些非同步光纖碼並可被分割成多個碼子集之樹狀架構,同時每一個碼子集之碼總數量與其碼互相關值相互對應。此外,本論文同時分析了新式二維光纖碼經由硬式限幅器之系統效能並與多階層質數碼於相同參數下作比較。我們的結果顯示新式二維光纖碼之獨特分割性質將可根據系統對於可支援的使用者數量或系統傳輸率等不同的傳輸需求,提供了使用者在碼之數量與系統效能間的選擇方案。此外,新式二維光纖碼之多個樹狀架構將可支援如光纖分碼多工系統之網路閘道器或在碼隱匿性需求較高的傳輸環境等需要較多光纖碼的快速交換之應用。

In this thesis, the extended Reed-Solomon codes are modified to construct a new family of 2-D optical codes for asynchronous optical code-division multiple access (O-CDMA). Besides having expanded and asymptotically optimal cardinality, these asynchronous codes can be partitioned into multiple tree structures of code subsets, in which cardinality is a function of the cross-correlation value assigned to the subset. The hard-limiting performance of these 2-D optical codes is analyzed and compared with the multilevel prime codes under the same code parameters. Our results show that the unique partition property of these codes supports a trade-off between code cardinality and performance for meeting different system requirements, such as user capacity and throughput. In addition, the multiple-tree structure of the new codes potentially supports applications that requires rapid switching of many optical codes, such as in O-CDMA-network gateway or in environments where code obscurity is essential.
URI: http://hdl.handle.net/11455/4898
其他識別: U0005-2208201217322200
Appears in Collections:通訊工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.