Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4913
DC FieldValueLanguage
dc.contributor.advisor李季眉zh_TW
dc.contributor.advisorLee C. M.en_US
dc.contributor.author林君翰zh_TW
dc.contributor.authorLIN, C.H.en_US
dc.date2002zh_TW
dc.date.accessioned2014-06-06T06:33:32Z-
dc.date.available2014-06-06T06:33:32Z-
dc.identifier.urihttp://hdl.handle.net/11455/4913-
dc.description.abstractEDTA為一種人工合成的螯合劑,能與金屬離子形成穩定的化合物。由於其化合物具有高穩定性,因此EDTA被廣泛應用於各種行業,諸如纖維染整業、清潔劑製造業、金屬工業…化妝品業等等。雖然EDTA在環境中不具毒性,但它的難分解特性使得無法以傳統的生物處理及物化處理方法去除。此外,EDTA的存在會使土壤及河川底泥中的重金屬再度溶解於水中,而直接影響人體健康或經由植物的累積再由食物鏈傳輸到人體中。因此如何有效且妥善處理含有EDTA之廢水成為刻不容緩之事。本研究的目的即在探討不同的環境因子以及外加碳源對Pseudomonas aeruginosa分解EDTA之影響,盼能提昇EDTA之去除率。此外,以不同的醋酸利用菌進行實驗,並探討NADH對於EDTA分解之影響。 本研究利用16S rRNA序列菌種鑑定的方法進行鑑定,確定菌株An1之菌名為Pseudomonas aeruginosa。由實驗結果顯示,P. aeruginosa之最佳生長溫度為30℃,在此溫度下之比生長速率為0.0744hr-1。P. aeruginosa 所能忍受的pH範圍相當廣泛,在不同起始的pH下皆能生長良好,其中在pH 5時EDTA去除率最差(44.3%),而在pH 9時EDTA去除率最佳(58.1%),顯示EDTA在鹼性條件下的去除效果較好。P. aeruginosa 於含鈣離子之磷酸鹽緩衝溶液與不含鈣離子之磷酸鹽緩衝溶液中,對FeEDTA的去除率沒有太大的差別。換句話說,影響EDTA分解之酵素不需要鈣離子作為輔助因子。P. aeruginosa 在有添加氯化銨的磷酸鹽緩衝溶液中,對於FeEDTA的去除率是沒有添加氯化銨的一倍以上。顯示P. aeruginosa無法以EDTA為唯一氮源,須額外添加易分解氮源以利菌株生長,而EDTA的去除率才有明顯增加的現象。 在外加碳源方面,添加醋酸鈉及乙二胺皆可促進EDTA的去除,而添加NTA及乳酸鈉對於EDTA之去除則沒有幫助。菌株在以EDTA為唯一碳源的條件下無法將其分解,必需額外添加碳源才能代謝EDTA,故EDTA的分解應該是共代謝的現象。此外,在植種不同之醋酸利用菌且添加醋酸鈉的情況下,菌株皆可共代謝EDTA,但無法將其完全礦化,其中以菌株MDC-3的EDTA去除率最佳(56.1%),而菌株TDM-3的EDTA去除率最差(33.1%)。zh_TW
dc.description.abstractEDTA is a chelating agent from the group of aminopolycarboxylic acids with the ability to form stable, water-soluble complexes with most metal ions. Because of high stability of its complexes, EDTA is employed for various industrial and domestic applications, e.g. cleaners, metal processing etc. EDTA exhibits no environmental toxicity, but it is a recalcitrant organic compound that cannot be removed by conventional biological and physical-chemical methods of wastewater treatment. Moreover, EDTA has some undesirable environmental consequences such as the remobilization of radionuclides and heavy metals from soils and sediments. The mobilized radionuclides and toxic heavy metals can cause direct health problems or can be accumulated by plants and then transferred to human beings through the food chain. Therefore, it becomes a great urgency to treat the wastewaters containing EDTA efficiently. To raise the treatment efficiency, the environmental factors and the additional carbon sources affecting the degradation of EDTA by Pseudomonas aeruginosa were studied. Besides, the degradation of EDTA by different pure cultures that utilize sodium acetate as substrate was tested, and the effect of NADH on EDTA degradation was also investigated. The strain An1 was identified as Pseudomonas aeruginosa by the method of 16S rRNA sequencing. The temperature and pH optima for EDTA oxidation were 30℃ and 9, respectively. The addition of CaCl2 to the phosphate buffer was no help of the removal of EDTA, suggesting that the enzyme does not require calcium for its activity. The removal ability of EDTA by Pseudomonas aeruginosa grown with NH4Cl and EDTA as the nitrogen sources was about one-fold higher than with EDTA as the sole nitrogen source. It indicated that Pseudomonas aeruginosa could not be grown with EDTA as the sole nitrogen source and the degradation of EDTA was stimulated by the addition of NH4Cl. In the aspect of carbon source addition, the degradation of EDTA was stimulated by the addition of either sodium acetate or ethylenediamine. However, additional nitrilotriacetic acid and sodium lactate did not influence EDTA degradation. Since the strain grown with EDTA as the sole carbon source could not degrade EDTA and could only metabolize EDTA by adding biodegradable carbon sources, the mechanism of EDTA degradation must be co-metabolism. In addition, EDTA could be cometabolized by all the sodium acetate-utilizing microorganisms in the presence of sodium acetate, but could not be completely mineralized. The removal ability of EDTA by strain MDC-3 was the best (56.1%) and that by strain TDM-3 was the worst (33.1%).en_US
dc.description.tableofcontents中文摘要 I 英文摘要 III 目錄 V 表目錄 X 圖目錄 XI 第一章 前言 1 第二章 文獻回顧 3 2-1 錯合反應概述 3 2-2 螯合劑之種類及作用 4 2-2-1 腐植酸 4 2-2-2 NTA及EDTA 5 2-2-3 聚磷酸鹽 5 2-2-4 其他螯合劑 6 2-3 水體中螯合劑之出現與重要性 6 2-4 錯合物之穩定性及穩定常數 7 2-4-1 穩定性 7 2-4-2 穩定常數 8 2-5 EDTA的物化特性 9 2-5-1 EDTA的酸鹼性 9 2-5-2 EDTA和金屬離子的錯合物 9 2-5-3 EDTA錯合物的溶解度 11 2-5-4 EDTA錯合物的穩定常數 13 2-6 EDTA於各種產業中之應用 15 2-6-1 EDTA在印染上的應用 16 2-6-2 EDTA在電鍍及印刷電路板的應用 16 2-6-3 EDTA在醫療上的應用 17 2-6-4 EDTA在土壤復育上的應用 18 2-6-5 EDTA在食品工程上的應用 18 2-7 EDTA之製造方法與危害 19 2-8 EDTA之物化處理 20 2-8-1 光解法 20 2-8-2 過氧化氫/紫外光程序法 22 2-8-3 電化學法 22 2-8-4 臭氧氧化法 23 2-9 EDTA之生物處理 24 2-9-1 EDTA之分解菌 25 2-9-2 中間代謝產物之研究 26 2-9-3 可能之代謝途徑 28 2-9-4 參與EDTA分解之酵素 31 2-9-5 影響EDTA分解之基因 33 2-10 影響EDTA分解之因子 33 2-10-1 金屬離子及穩定常數 33 2-10-2 輔助因子 36 2-10-3 pH值 37 2-10-4 維他命 37 2-10-5 磷酸鹽緩衝液 38 2-10-6 其它 39 第三章 材料與方法 41 3-1 16S rRNA序列菌種鑑定 41 3-2 不同環境因子對菌株An1分解EDTA之影響 47 3-2-1 菌種來源 47 3-2-2 菌種保存及預培養方法 47 3-2-3 批次實驗 49 3-2-3-1 溫度梯度實驗 49 3-2-3-2 pH值對菌株An1分解EDTA之影響 49 3-2-3-3 金屬離子對菌株An1分解EDTA之影響 51 3-2-3-4 氯化銨對菌株An1分解EDTA之影響 51 3-3 外加碳源對EDTA去除之研究 53 3-3-1 菌種來源 53 3-3-2 菌種保存及預培養方法 53 3-3-3 批次實驗 53 3-3-3-1 添加三乙酸基胺(NTA)對菌株An1分解EDTA之影響 53 3-3-3-2 添加乙二胺(ED)對菌株An1分解EDTA之影響 54 3-3-3-3 添加醋酸鈉對菌株An1分解EDTA之影響 54 3-3-3-4 添加乳酸鈉對菌株An1分解EDTA之影響 54 3-4 醋酸利用菌對EDTA去除之研究 55 3-4-1 菌種來源 55 3-4-2 菌種保存及預培養方法 55 3-4-3 批次實驗 55 3-5 NADH對EDTA分解之影響 56 3-6 分析方法 56 3-6-1 酸鹼度(pH值) 56 3-6-2 菌株生長情況(O.D.600) 56 3-6-3 化學需氧量(COD) 57 3-6-4 乙二胺四乙酸(EDTA)濃度 57 3-6-5 醋酸鈉(sodium acetate) 58 3-7 化學藥品、鹼洗液及實驗用水 59 3-7-1 化學藥品 59 3-7-2 鹼洗液 60 3-7-3 實驗用水 60 第四章 結果與討論 61 4-1 16S rRNA序列菌種鑑定 61 4-2 不同環境因子對Pseudomonas aeruginosa分解EDTA之影響 63 4-2-1 菌株於不同溫度下之生長速率 63 4-2-2 pH值對Pseudomonas aeruginosa分解EDTA之影響 63 4-2-3 金屬離子對Pseudomonas aeruginosa分解EDTA之影響 70 4-2-4 氯化銨對Pseudomonas aeruginosa分解EDTA之影響 72 4-3 外加碳源對EDTA去除之研究 75 4-3-1 添加NTA對Pseudomonas aeruginosa分解EDTA之影響 75 4-3-2 添加ED對Pseudomonas aeruginosa分解EDTA之影響 76 4-3-3 添加醋酸鈉對Pseudomonas aeruginosa分解EDTA之影響 80 4-3-4 添加乳酸鈉對Pseudomonas aeruginosa分解EDTA之影響 93 4-3-5 綜合討論 94 4-4 醋酸利用菌對EDTA去除之研究 96 4-5 NADH對EDTA分解之影響 105 4-5-1 添加NADH對於EDTA分解之影響 105 4-5-2 添加FMN對於EDTA分解之影響 105 4-5-3 添加抑制劑對於EDTA分解之影響 107 4-5-4 綜合討論 107 第五章 結論與建議 113 5-1 結論 113 5-2 建議 115 參考文獻 117zh_TW
dc.language.isoen_USzh_TW
dc.publisher環境工程學系zh_TW
dc.subject醋酸鈉zh_TW
dc.subjectEDTAen_US
dc.subject乙二胺zh_TW
dc.subject共代謝zh_TW
dc.subjectNADHen_US
dc.title外加碳源對EDTA生物分解之影響zh_TW
dc.titleThe effect of additional carbon sources on the microbial degradation of EDTAen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:環境工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.