Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4974
標題: 不同氧化反應對奈米碳管分散性及比表面積之影響
Effect of various oxidation processes on dispersability and BET surface area of carbon nanotubes
作者: 蔡子奇
Tsai, Tzu-Chi
關鍵字: 奈米碳管改質;Modified carbon nanotubesn;硝酸;次氯酸鈉;過氧化氫;過硫酸鈉;nitric acid;sodium hypochlorite;hydrogen peroxide;sodium persulfate;potassium monopersulfate triple salt
出版社: 環境工程學系所
引用: 1. 洪昭男、徐逸明、王宏達,奈米碳管結構及特性簡介,化工,第49卷第1期,第23-32頁,2002。 2. 林江珍、林嵩祚,奈米碳管之有機分散性改質及應用,中華民國九十四年石油季刊,第41卷第3期,第47-59頁,2005。 3. Yakobson, B. I., Mechanical relaxation and intramolecular plasticity in carbon nanotubes, Applied Physics Letters, 72, 918, 1998. 4. Ruoff, R. S. and Lorents, D. C., Mechanical and thermal proterties of carbon nanotubes, Carbon, 33, 925-930, 1995. 5. Berber, S., kwon, Y. K. and Tomanek, D., Unusually high thermal conductivity of carbon nanotubes, Physical Review Letters, 84, 4613-4616, 2000. 6. 李詩詮,奈米碳管之合成與電磁波屏蔽奈米複合材料之研究,國立東華大學材料科學與工程研究所碩士論文,2003。 7. 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳裕民,奈米科技導論,全華科技圖書股份有限公司,第一版,2003。 8. Bethune, D. S., Klang C. H., Vries, M. S., Gorman, G., Savoy, R., Vazquez, J. and Beyers, R., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 363, 605-606, 1993. 9. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C. H., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E. and Smalley, R. E., Crystalline ropes of metallic carbon nanotubes, Science, 273, 483-487, 1996. 10. Pan, Z. W., Xie, S. S., Chang, B. H., Sun, L. F., Zhou, W. Y. and Wang, G., Direct growth of aligned open carbon nanotubes by chemical vapor deposition, Chemical Physics Letters, 299, 97-102, 1999. 11. Park, Y. S., Kim, K. S., Jeong, H. J., Kim, W. S., Moon, J. M., An, K. H., Bae, D. J., Lee, Y. S., Park, G. S. and Lee, Y. H., Low pressure synthesis of single-walled carbon nanotubes by arc discharge, Synthetic Metals, 126, 245-251, 2002. 12. Saito, R., Dresselhaus, G. and Dresselhaus, M. S. : Physical Propertise of Carbon Nanotubes, Imperial College Press, London, 1998. 13. Journet, C. and Bernier, P., Production of carbon nanotubes, Applied Physics A, 67, 1-9, 1998. 14. Robertson, S. D., Carbon formation from methane pyrolysis over some transition metal surfaces - I. Nature and properties of the carbons formed, Carbon, 8, 365-374, 1970. 15. Walker, Jr. P. L., Rakszawski, J. F. and Imperial, G. R., Carbon formation from carbon monoxide-hydrogen mixtures over iron catalysts. I. properties of carbon formed, The Journal Physical Chemistry, 63, 133-140, 1959. 16. Baird, T., Frayer, J. R. and Grant, B., Structure of fibrous carbon, Nature, 233, 329-330, 1971. 17. Yacaman, M. J., Yoshida, M. M., Rendon, M. and Santiesteban, J. G., Catalytic growth of carbon microtubules with fullerene structure, Applied Physics Letters, 62, 202-204, 1993. 18. 楊育峰,奈米碳管接枝幾丁聚醣之物性研究,國立雲林科技大學工業化學與災害防治研究所碩士論文,2003。 19. Saito, Y., Okuda, M., Tomita, M. and Hayashi, T., Extrusion of single-wall carbon nanotubes via formation of small particles condensed near an arc evaporation source, Chemical Physics Letters, 236, 419-426, 1995. 20. Laplaze, D., Bernier P., Maser, W. K., Flamant, G., Guillard, T. and Loiseau, A., Carbon nanotubes-the solar approach, Carbon, 36, 685-688, 1998. 21. Iijima, S., Helical microtubules of graphitic carbon, Nature, 354, 56-58, 1991. 22. Ebbesen, T. W., Carbon Nanotubes - Preparation and Properties, CRC Press, New York, 1997. 23. Saito, R., Dresselhaus, G. and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998. 24. Harris, P. J. F., Carbon Nanotubes and Related Structure, Cambridge University Press: New York, 1999. 25. 化工產業技術知識網:http://www.chemtech.com.tw, 2011. 26. 麥富德,碳奈米管專利地圖及分析carbon nanotube eng 麥富德等作,行政院國科會科資中心,台北,2002。 27. 黃建良、黃淑娟,奈米碳纖與奈米碳管合成技術簡介,化工,第50卷第2 期,第18 -25頁,2003。 28. Sciscape新聞報導,2002. 物理:利用碳奈米管製成的邏輯電路可望在未來取代矽基晶片的角色。http://www.sciscape.org/. 29. Chen, P., Wu, X., Lin, J. and Tan, K. L., High H2 uptake by alkali - doped carbon nanotubes under ambient pressure and moderate temperatures, Science, 285, 91-93, 1999. 30. 奈米科學網:http://nano.nchc.org.tw, 2011. 31. Hu, N., Liu, X., Chen, F. and Yang, Z., Guangzhou institute of chemistry, Chinese Academy of Sciences 22, 78-82, 2005. 32. Zhu, W., Carbon Nanotubes: An Industrial Perspective, in Defense Science and Technology Seminar on Emerging Technologies, Arlington, VA, March 19, 1999. 33. Park, O. k., Kim, N. H., Lau, K. T. and Lee, J. H., Effect of surface treatment with potassium persulfate on dispersion stability of multi-walled carbon nanotubes, Materials Letters 64, 718-721, 2010. 34. Sheng, G. D., Shao, D. D., Ren, X. M., Wang, X. Q., Li, J. X., Chen, Y. X. and Wang, X. K., Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as - prepared and oxidized multiwalled carbon nanotubes, Journal of Hazardous Materials 178, 505-516, 2010. 35. Su, F. S., Lu, C. S. and Hu, S. K., Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl - oxidized carbon nanotubes, Colloids and Surfaces A: Physicochem. Eng. Aspects 353, 83-91, 2010. 36. Salam, M. A., Effect of oxidation treatment of multi - walled carbon nanotubes on the adsorption of pentachlorophenol from aqueous solution: Kinetics study, Arabian Journal of Chemistry, 2010. 37. Liu, M. H., Yang, Y. L., Zhu, T. and Liu, Z. F., Chemical modification of single - walled carbon nanotubes with peroxytrifluoroacetic acid, Carbon 43, 1470–1478, 2005. 38. Teng, F., Gaugeu, B., Liang, S. H. and Zhu, Y. F., Preparation of LaSrCuO4 nanowires by carbon nanotubes and their, Applied Catalysis A, 328, 156-162, 2007. 39. Rosca, I. D., Watari, F., Uo, M. and Akasaka, T., Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon, 43, 3124-3131, 2005. 40. Teng, F., Liang, S. H., Gaugeu, B., Zong, R. L., Yao, W. Q. and Zhu, Y. F., Carbon nanotubes - templated assembly of LaCoO3 nanowires at low temperatures and its excellent catalytic properties for CO oxidation,Catalysis Communications, 8, 1748-1754, 2007. 41. Lu, C. S., Liu, C. T. and Rao, G. P., Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon, Journal of Hazardous Materials 151, 239-246, 2008. 42. Qui, N. V., Scholz, P., Krech, T., Keller, T. F., Pollok, K. and Ondruschka, B., Multiwalled carbon nanotubes oxidized by UV H2O2 as catalyst for oxidative dehydrogenation of ethylbenzene, Catalysis Communications 12, 464-469, 2011. 43. Zhang, L., Ni, Q. Q., Fu, Y. Q. and Natsuki, T., One-step preparation of water-soluble single-walled carbon nanotubes, Applied Surface Science 255, 7095-7099, 2009. 44. 鐘耀磊,奈米碳管吸附自來水中三鹵甲烷之研究,國立中興大學環境工程研究所論文,2004。 45. 石立節,奈米碳管酸純化前後表面特性之變化,國立中央大學環境工程研究所碩士論文,2005。 46. 劉明翰,粉狀活性碳吸附氯化汞之研究:操作參數之影響及恆溫吸附模式之建立,國立中山大學環境工程研究所論文,2001。 47. 林哲仁,活性碳之評估與選擇,環境工程會刊,第6卷第1期,第23-24 頁,1995。 48. 蔡安東,化學活化法製備孟宗竹活性碳製程之研究,國立雲林科技大學化學工程與材料工程研究所碩士論文,2007。 49. 譚仁豪,微波化學程序改質之奈米碳管吸附水中鎘離子之研究,國立雲林科技大學環境與衛生工程研究所碩士論文,2008。 50. Okpalugo, T. I. T., Papakonstantinou, P., Murphy, H., McLaughlin, J. and Brown, N. M. D., High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs, Carbon 43, 153-161. 2005. 51. Kiss-Eross, K., Analytical infrared spectroscopy, Amsterdam: Elsevier, 1976. 52. 蘇哲弘,選擇性氧化多壁奈米碳管之特性研究,國立中正大學化學工程研究所碩士論文,2006。
摘要: 
奈米碳管(Carbon nanotube, CNTs)是一種由原子構成之中空管狀體,在近幾年快速崛起,因為特殊的材料特性,其應用範圍相當廣泛。然而,於水溶液中CNTs易傾向團聚/沉澱,因而可能會降低其吸附之能力。目前一項針對奈米碳管改質,使其能懸浮於水中之改質程序為化學氧化反應改質,但大多數之研究多以少數或單一種氧化劑濃度高低進行試驗,較缺乏對廣泛性氧化劑於類似之條件下,予以改質並比較碳管表面特性變化,因此本研究使用硝酸(HNO3)、次氯酸鈉(NaOCl)、過氧化氫(H2O2)、過硫酸鈉(Na2S2O8)及過氧硫酸鉀三聚鹽(2KHSO5‧KHSO4‧K2SO4)等五種氧化劑各分高低濃度範圍進行奈米碳管氧化改質,以了解奈米碳管氧化改質後之表面物化特性差異,並藉由觀察物化特性變化及吸附甲基藍溶液之研究,比較改質後之特性影響。
BET分析結果顯示,以H2O2 1.26 M及H2O2 12.6 M氧化多壁奈米碳管(MWCNTs)改質後之比表面積有顯著增加,其餘氧化劑改質奈米碳管之比表面積則無顯著增加。進一步比較奈米碳管改質前後之孔徑體積變化,奈米碳管改質後之孔徑體積明顯降低,推測可能原因為奈米碳管所產生的官能基占據奈米碳管孔徑的位置,造成孔徑體積減少。由FTIR分析結果可知,在1501、1690及3510有較明顯之特性吸收峰波,其官能基分別為C=C、C=O及O-H。以Na2S2O8 0.1 M-MWCNTs及HNO3 3 M-MWCNTs改質奈米碳管之官能基較不明顯,可能是因出現帶電的官能基(解離後帶負電之官能基)產生排斥而削弱羧基,導致表面官能基無法顯現。由懸浮性試驗之結果顯示,NaOCl 2.2 M-MWCNTs之pH 3、7及9懸浮性較佳,其餘皆聚集沉澱,可能原因為大部分的官能基並未具有足夠之數量,使碳管間之凡德瓦爾力增加而聚集沉澱,才導致改質後之奈米碳管快速沉降。甲基藍吸附實驗結果顯示,改質前之吸附率為97.6%,以2KHSO5.KHSO4.K2SO4 0.01 M及NaOCl 0.22 M改質後之吸附率些微提升,分別為98.8及98.3%,顯示此兩種改質劑濃度有提升吸附效果。而使用其他氧化劑改質則略低於改質前之奈米碳管,其中又以Na2S2O8 0.01 M改質,吸附率為82.9%,顯示此改質方式並不適宜做為改質奈米碳管之氧化劑。
URI: http://hdl.handle.net/11455/4974
其他識別: U0005-0708201101310400
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.