Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4976
標題: 過硫酸鹽活化程序對整治難分解性有機污染物之適用性篩選試驗
Screening of various persulfate activations for remediating persistent organic compounds
作者: 雷鎔瑄
Lei, Jung-Hsuan
關鍵字: In situ chemical oxidation;現地化學氧化法;persulfate activations;sulfate radical;chemical probe;persistent organic compounds;活化過硫酸鹽;硫酸根自由基;化學探針;難分解性有機污染物
出版社: 環境工程學系所
引用: Alfassi, Z. B., Padmaja, S., Neta, P., Huie, R. E., 1993. Rate constants for reactions of nitrate (NO3.cntdot.) radicals with organic compounds in water and acetonitrile. The Journal of Physical Chemistry 97, 3780-3782. Anipsitakis, G. P., Dionysiou, D. D., 2004. Radical generation by the Interaction of transition metals with common oxidants. Environmental Science & Technology 38, 3705-3712. Arnold, W. A., Winget, P., Cramer, C. J., 2002. Reductive Dechlorination of 1,1,2,2-Tetrachloroethane. Environmental Science & Technology 36, 3536-3541. ATSDR, 1996. Polycyclic aromatic hydrocrbons(PAHs). Agency for Toxic Substances and Disease Registry (ATSDR). Available from: <http://www.atsdr.cdc.gov/>. ATSDR, 1997. Toxicological profile for trichloroethylene. Agency for Toxic Substances and Disease Registry (ATSDR). Available from: <http://www.atsdr.cdc.gov/>. ATSDR, 1999. Toxicological Profile for Chlorophenols. Agency for Toxic Substances and Disease Registry (ATSDR). Available from: <http://www.atsdr.cdc.gov/>. ATSDR, 2000. Toxicological Profile for Toluene. Agency for Toxic Substances and Disease Registry (ATSDR). Available from: <http://www.atsdr.cdc.gov/>. ATSDR, 2007a. Toxicological Profile for Benzene. Agency for Toxic Substances and Disease Registry (ATSDR). Available from: <http://www.atsdr.cdc.gov/>. ATSDR, 2007b. Toxicological Profile for Xylene. Agency for Toxic Substances and Disease Registry (ATSDR). Available from: <http://www.atsdr.cdc.gov/>. ATSDR, 2010. Toxicological Profile for Ethylbenzene. Agency for Toxic Substances and Disease Registry (ATSDR). Available from: <http://www.atsdr.cdc.gov/>. Banerjee, M., Konar, R. S., 1984. Comment on the paper “polymerization of acrylonitrile initiated by K2S2O8-Fe(II) redox system”. Journal of Polymer Science: Polymer Chemistry Edition 22, 1193-1195. Bao, Z.-C., Barker, J. R., 1996. Temperature and ionic strength effects on some reactions involving sulfate radical. The Journal of Physical Chemistry 100, 9780-9787. Block, P. A., Brown, R. A., Robinson, D., 2004. Novel activation technologies for sodium persulfate in situ chemical oxidation. Proceedings of the Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds. Buxton, G. V., Barlow, S., McGowan, S., Salmon, G. A., Williams, J. E., 1999. The reaction of the SO3•- radical with FeII in acidic aqueous solution—A pulse radiolysis study. Physical Chemistry Chemical Physics 1, 3111-3115. Buxton, G. V., Greenstock, C. L., Phillips Helman, W., Ross, A. B., 1988. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (HO˙/O-˙) in aqueous solution. Journal of Physical Chemistry Reference Data 17, 513-531. Buxton, G. V., Malone, T. N. S., Salmon, G. A., 1997. Faraday transactions, reaction of SO4-˙ with Fe2+, Mn2+ and Cu2+ in aqueous solution. Journal of the Chemical Society 93, 2893-2897. Chu, W., Lau, T. K., Fung, S. C., 2006. Effects of combined and sequential addition of dual oxidants (H2O2/S2O82-) on the aqueous carbofuran photodegradation. Journal of Agricultural and Food Chemistry 54, 10047-10052. Corbin III, J. F., 2008. Mechanisms of base, mineral, and soil activation of persulfate for groundwater treatment. Washington State University Environmental & Natural Resource Sciences. Crimi, M. L., Taylor, J., 2007. Experimental evaluation of catalyzed hydrogen peroxide and sodium persulfate for destruction of BTEX contaminants. Soil and Sediment Contamination: An International Journal 16, 29-45. Criquet, J., Karpel Vel Leitner, N., 2011. Electron beam irradiation of aqueous solution of persulfate ions. Chemical Engineering Journal 169, 258-262. Dogliotti, L., Hayon, E., 1967. Flash photolysis of per[oxydi]sulfate ions in aqueous solutions. The sulfate and ozonide radical anions. The Journal of Physical Chemistry 71, 2511-2516. Domenico, P. A., Schwartz, F. W., 1990. Physical and Chemical Hydrogeology. John wiley & Sons, Inc. New York, NY, 506. Eberson, L., 1987. Electron transfer reactions in organic chemistry. Spriner-Verlag, Berlin. Eibenberger, H., Steenken, S., O''Neill, P., Schulte-Frohlinde, D., 1978. Pulse radiolysis and electron spin resonance studies concerning the reaction of SO4.cntdot.- with alcohols and ethers in aqueous solution. The Journal of Physical Chemistry 82, 749-750. Feng, J., Lim, T.-T., 2005. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn. Chemosphere 59, 1267-1277. FMC, 2001. Persulfate Technical Information. FMC Corporation Available from: <http://www.fmc.com/AboutFMC.aspx>. FMC, 2010. The Safe Use of Klozur&reg; Persulfate Activators. FMC Corporation. Available from: <http://www.envsolutions.fmc.com/ResourceCenter/PeroxygenTalkArchive.aspx?itemId=1063>. FMC, 2011. The Solution to Klozurtm Persulfate Solutions. FMC Corporation. Available from: <http://www.fmcprosolutions.com/Home/NewsEvents/tabid/1185/Default.aspx?itemId=863>. Fordham, J. W. L., Williams, H. L., 1951. The persulfate-iron(II) initiator system for free radical polymerizations 1. Journal of the American Chemical Society 73, 4855-4859. Furman, N. H., Wallace, J. H., 1930. Applications of ceric sulfate in volumetric analysis. VII. The oxidation of hydroquinone by ceric sulfate. Journal of the American Chemical Society 52, 1443-1447. Furman, O. S., Teel, A. L., Watts, R.J., 2010. Mechanism of Base Activation of Persulfate. Environmental Science & Technology 44, 6423-6428. Gupta, S. S., Gupta, Y. K., 1981. Hydrogen ion dependence of the oxidation of iron (II) with perosydisulfate in acid perchlorate solutions. Inorganic Chemistry 20, 454-457. Haag, W. R., Yao, C. C. D., 1992. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environmental Science & Technology 26, 1005-1013. Hayon, E., Treinin, A., Wilf, J., 1972. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2-, SO3-, SO4-, and SO5- radicals. Journal of the American Chemical Society 94, 47-57. Herdman, G. J., Neilson, G. W., 1992. Ferrous Fe(II) hydration in a 1 molal heavy water solution of iron chloride. Journal of Physics: Condensed matter 4, 649-653. House, D. A., 1962. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews 62, 185-203. Huang, K.-C., Couttenye, R. A., Hoag, G. E., 2002. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49, 413-420. Huang, K.-C., Zhao, Z., Hoag, G. E., Dahmani, A., Block, P. A., 2005. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 61, 551-560. Huie, R. E., Clifton, C. L., Neta, P., 1991. Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 38, 477-481. Kislenko, V. N., Berlin, A. A., Litovchenko, N. V., 1995. Kinetics of glucose oxidation with persulfate ions, catalyzed by iron salts. Russian Journal of General Chemistry 65, 1092-1096. Kislenko, V. N., Berlin, A. A., Litovchenko, N. V., 1997. Kinetics of oxidation of glucose by persulfate ion in the presence of Mn (II) ion. Kinetics and Catalysis 38, 391-396. Kolthoff, I. M., Miller, I. K., 1951. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1. Journal of the American Chemical Society 73, 3055-3059. Kub&aacute;tov&aacute;, A., Lagadec, A. J. M., Hawthorne, S. B., 2002. Dechlorination of lindane, dieldrin, tetrachloroethane, trichloroethene, and PVC in subcritical water. Environmental Science & Technology 36, 1337-1343. Kueper, B. H., Davies, K. L., 2009. Assessment and delineation of DNAPL source zones at hazardous waste sites. USEPA. Latimer, W. M., 1952. Oxidation Potentials. Prentice-Hall, Inc. Englewood Cliffs, NJ. Liang, C., Bruell, C. J., 2008. Thermally activated persulfate oxidation of trichloroethylene: experimental investigation of reaction orders. Industrial & Engineering Chemistry Research 47, 2912-2918. Liang, C., Bruell, C. J., Marley, M. C., Sperry, K. L., 2003. Thermally activated persulfate oxidation of Trichloroethylene (TCE) and 1,1,1-Trichloroethane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination: An International Journal 12, 207-228. Liang, C., Bruell, C. J., Marley, M. C., Sperry, K. L., 2004a. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere 55, 1213-1223. Liang, C., Bruell, C. J., Marley, M. C., Sperry, K. L., 2004b. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere 55, 1225-1233. Liang, C., Chen, Y.-J., 2010. Evaluation of activated carbon for remediating benzene contamination: Adsorption and oxidative regeneration. Journal of Hazardous Materials 182, 544-551. Liang, C., Huang, C.-F., Chen, Y.-J., 2008. Potential for activated persulfate degradation of BTEX contamination. Water Research 42, 4091-4100. Liang, C., Huang, C.-F., Mohanty, N., Lu, C.-J., Kurakalva, R.M., 2007a. Hydroxypropyl-β-Cyclodextrin-Mediated Iron-Activated Persulfate Oxidation of Trichloroethylene and Tetrachloroethylene. Industrial & Engineering Chemistry Research 46, 6466-6479. Liang, C., Su, H.-W., 2009. Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Industrial & Engineering Chemistry Research 48, 5558-5562. Liang, C., Wang, Z.-S., Bruell, C. J., 2007b. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66, 106-113. Liang, C., Wang, Z.-S., Mohanty, N., 2006. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 °C. Science of The Total Environment 370, 271-277. Lindsey, M. E., Tarr, M. A., 1999. Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter. Environmental Science & Technology 34, 444-449. Lindsey, M. E., Tarr, M. A., 2000. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. Chemosphere 41, 409-417. Lingane, J. J., 1958. Volumetric analysis. Volume III. Titration methods: oxidation-reduction reactions. Journal of the American Chemical Society 80, 2599-2600. Liou, R.-M., Chen, S.-H., Hung, M.-Y., Hsu, C.-S., Lai, J.-Y., 2005. Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution. Chemosphere 59, 117-125. Neta, P., Madhavan, V., Zemel, H., Fessenden, R. W., 1977. Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds. Journal of the American Chemical Society 99, 163-164. NIST, 2011. NIST Chemistry WebBook. National Institute of Standards and Technology(NIST). Available from: <http://webbook.nist.gov/chemistry/>. O''Neill, P., Steenken, S., Schulte-Frohlinde, D., 1975. Formation of radical cations of methoxylated benzenes by reaction with hydroxyl radicals, thallium(2+), silver(2+), and peroxysulfate (SO4.-) in aqueous solution. Optical and conductometric pulse radiolysis and in situ radiolysis electron spin resonance study. The Journal of Physical Chemistry 79, 2773-2779. Ottolenghi, M., Stein, G., 1961. The Radiation Chemistry of Chloroform. Radiation Research 14, 281-290. Pennington, D. E., Haim, A., 1968. Stoichiometry and mechanism of the chromium(II)-peroxydisulfate reaction. Journal of the American Chemical Society 90, 3700-3704. Rastogi, A., Al-Abed, S. R., Dionysiou, D. D., 2009. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols. Water Research 43, 684-694. Rivas, F. J., 2006. Polycyclic aromatic hydrocarbons sorbed on soils: A short review of chemical oxidation based treatments. Journal of Hazardous Materials 138, 234-251. Siegrist, R. L., Urynowicz, M. A., West, O. A., Crimi, M. L., Lowe, K. S., 2001. Principles and Practices of In Situ Chemical Oxidation Using Permanganate. Battelle press. Skar•ewski, J., 1984. Cerium catalyzed persulfate oxidation of polycyclic aromatic hydrocarbons to quinones. Tetrahedron 40, 4997-5000. Solomons, T. W. G., 2002. 有機化學. 藝軒圖書出版公司 第258頁. Song, W., Ravindran, V., Pirbazari, M., 2008. Process optimization using a kinetic model for the ultraviolet radiation-hydrogen peroxide decomposition of natural and synthetic organic compounds in groundwater. Chemical Engineering Science 63, 3249-3270. Teel, A. L., Watts, R. J., 2002. Degradation of carbon tetrachloride by modified Fenton''s reagent. Journal of Hazardous Materials 94, 179-189. Thomas, J. R., 1955. The thermal decomposition of alkyl hydroperoxides1. Journal of the American Chemical Society 77, 246-248. USEPA, 2003a. Contaminant candidate list regulatory determination support document for naphthalene. Office of Water Report EPA 815-R-03-014. USEPA, 2003b. Drinking water advisory: consumer acceptability advice and health effects analysis on sulfate. EPA 822-R-03-007. USEPA, 2011. Priority Pollutants. USEPA. Van Eldik, R., Harris, G. M., 1980. Kinetics and mechanism of the formation, acid-catalyzed decomposition, and intramolecular redox reaction of oxygen-bonded (sulfito)pentaamminecobalt(III) ions in aqueous solution. Inorganic Chemistry 19, 880-886. Vogel, A. I., 1978. A Text-Book of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis. 4th ed., ed. Bassett, J., Longmans Group Ltd., London, 365-366. Waldemer, R. H., Tratnyek, P. G., Johnson, R. L., Nurmi, J. T., 2006. Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environmental Science & Technology 41, 1010-1015. Wang, S., Sheng, Y., Feng, M., Leszczynski, J., Wang, L., Tachikawa, H., Yu, H., 2007. Light-induced cytotoxicity of 16 polycyclic aromatic hydrocarbons on the US EPA priority pollutant list in human skin HaCaT keratinocytes: Relationship between phototoxicity and excited state properties. Environmental Toxicology 22, 318-327. Xu, X.-R., Li, X.-Z., 2010. Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Separation and Purification Technology 72, 105-111. Zepp, R. G., Hoigne, J., Bader, H., 1987. Nitrate-induced photooxidation of trace organic chemicals in water. Environmental Science & Technology 21, 443-450. Zhao, J., Zhang, Y.-Q., Quan, X., Chen, S., 2010. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Separation and Purification Technology 71, 302-307. Ziajka, J., Pasiuk-Bronikowska, W., 2005. Rate constants for atmospheric trace organics scavenging SO4- in the Fe-catalysed autoxidation of S(IV). Atmospheric Environment 39, 1431-1438. 行政院勞工委員會, 2011. GHS化學品全球調和制度/物質安全資料表. 行政院勞工委員會. Available from: <http://ghs.cla.gov.tw/CHT/masterpage/index_CHT.aspx> 行政院農委會, 2011. 果樹營養診斷. 行政院農委會. 行政院環保署, 2008. 土壤污染管制標準. 行政院環保署. 行政院環保署, 2009a. 地下水污染管制標準. 行政院環保署. 行政院環保署, 2009b. 飲用水管制標準. 行政院環保署. 行政院環保署, 2011a. 土壤及地下水污染物/物質安全資料表. 行政院環保署. Available from: <http://sgw.epa.gov.tw/public/07_Pollutant.asp?polluMethod=GW> 行政院環保署, 2011b. 毒性化學物質/物質安全資料表. 行政院環保署. Available from: <http://toxiceric.epa.gov.tw/Chm_/Chm_index.aspx?vp=MSDS> 林財富, 2005. 土壤及地下水污染物化整治技術介紹. 土壤及地下水污染預防與整治之法令及技術宣導講習會. 施英隆, 2000. 環境化學. 五南圖書出版公司 第379頁. 高雄市環保局, 2011. 土壤及地下水污染整治技術介紹. 高雄市環保局. Available from:<http://depweb.ksepb.gov.tw/2/soil/p2.html>. 梁振儒, 2007. 淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法. 台灣土壤及地下水環境保護協會簡訊 第23期 第13-20頁 勞工安全衛生研究所, 2011a. Hazardous chemical database. 勞工安全衛生研究所 Available from: <http://ull.chemistry.uakron.edu/erd/>. 勞工安全衛生研究所, 2011b. 化學毒物資料庫 (Toxnet). 勞工安全衛生研究所 Available from: <http://toxnet.nlm.nih.gov/ >. 勞工安全衛生研究所, 2011c. 物質安全資料表. 勞工安全衛生研究所. Available from: <http://www.iosh.gov.tw/Publish.aspx?cnid=25> 經濟部中央地質調查所, 2011. 台灣之礦物. 經濟部中央地質調查所. 蘇信瑋, 2008. 熱活化過硫酸鹽程序自由基氧化劑生成之探討. 國立中興大學環境工程研究所碩士論文.
摘要: 
依據土壤及地下水管制標準,有機污染物可分類為單環芳香族碳氫化合物、多環芳香族碳氫化合物、氯化碳氫化合物、農藥及總石油碳氫化合物等五大類,其大多數污染物屬一般環境條件下難分解性之物質。本研究針對53種混合污染物包括單環芳香族碳氫化合物(苯、甲苯、乙苯及二甲苯)、多環芳香族碳氫化合物(萘)和鹵化碳氫化合物(鹵化烷類、鹵化烯類及鹵化苯類)及6種混合酚類化合物作為探討之目標污染物,以不同過硫酸鹽活化氧化反應程序,評估有機污染物之去除效率及適用之氧化方式可行性;而後針對較佳之適用活化程序對三氯甲烷污染物進行評估,探討不同氧化劑或活化劑之劑量以及不同反應時間之影響,且另以化學探針方法,鑑定參與反應之自由基氧化劑物種。

經由五種不同活化過硫酸鹽氧化反應篩選實驗結果得知,熱活化及鹼活化過硫酸鹽可較有效降解53種混合有機污染物及酚類污染物,當比較此兩種氧化程序實驗結果可知,鹼活化過硫酸鹽所需之氧化劑量較低,為一具潛力之處理難分解性有機污染物之整治方式。進一步由鹼活化程序之不同劑量比實驗結果得知,改變不同鹼濃度對氯仿物質之降解速率無明顯差異;而改變不同SPS濃度時,SPS濃度增加則氯仿降解速率越快。由自由基氧化劑鑑定實驗結果得知,於鹼活化程序之條件下,HO‧為主要之自由基氧化劑物種。

According to soil and groundwater contaminant control standards, organic contaminants can be classified as monocyclic aromatic hydrocarbons(MAHs), polycyclic aromatic hydrocarbons(PAHs), chlorinated hydrocarbons(CHs), pesticides and total petroleum hydrocarbons(TPHs), etc., which are persistent substances and resistant to degradation under natural environmental conditions. Therefore, this study focused on the treatability of 53 mixed organics including MAHs(benzene, toluene, ethylbenzene, and xylenes), PAHs(naphthalene), HHCs(halogenated alkanes, halogenated alkenes, halogenated aromatics) and 6 phenolic compounds with various persulfate activations. Furthemore, based on the selected most suitable persulfate activation process, optimum operating conditions including dosages of persulfate and activator and reaction time for treating chloroform were investigated. In addition, the chemical probe technique was applied to identify the radical species produced in the persulfate activation system.

The results of persulfate activation feasibility study revealed that thermal and base activated persulfate were capable of effectively degrading 53 mixed organic compounds and 6 phenolic compounds. When comparing these two activation systems, the lower persulfate consumption during base activated persulfate was observed and hence this process exhibited a great potential for remediating persistent organics contamination. Moreover, it was found that the dosage of base revealed no noticeable effects on chloroform degradation. However, the increase of persulfate concentration resulted in the increase in chloroform degradation efficiency. The results of radical identification experiments revealed that under base-activated persulfate process HO‧ is the major radical oxidizing species.
URI: http://hdl.handle.net/11455/4976
其他識別: U0005-0807201111033800
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.