Please use this identifier to cite or link to this item:
標題: 以鑭系金屬Nd、Sm、La改質二氧化鈦光催化降解染料Acid Red 27之研究
Study on the Photocatalytic Degradation of Acid Red 27 Using TiO2 Modified by Nd、Sm、La
作者: 林惠曼
Lin, Hui-Man
關鍵字: 二氧化鈦;紫外光催化;可見光催化;溶膠凝膠法;含鑭系金屬(釹、釤、鑭)之二氧化鈦;偶氮染料;TiO2;Photocatalystic under UV ligh;Photocatalystic under visible light;Sol-gel method;Lanthanide(Nd、Sm、La)-TiO2;Acid Red 27
出版社: 環境工程學系所
引用: 中文書籍 尹邦躍,2003,「奈米時代」,五南圖書出版股份有限公司。 江佳玲、張鎮南、黃柯倫,2007,「探討臭氧結合紫外光反應去除腐殖酸之降解情形」,東海科學學報,第九卷,pp. 15-28.。 行政院環保署,2010,放流水標準。 林錕松、郭昱清、楊立群、羅兆鈞,2005,「奈米瑞鈦礦二氧化鈦光觸媒之合成及結構分析之研究」,界面科學會誌,第27卷,pp.43-54。 張立德、牟季美,2002,「奈米材料和奈米結構」,滄海書局。 陳富亮,2003,「最新奈米光觸媒應用技術」,普林斯頓國際有限公司出版。 經濟部工業局,1993,染整工業「工業減廢技術手冊」。 經濟部工業局,1994,染整工業「染整業水污染防治技術手冊」。 廖盛焜,1982,「反應性染料之發展動向」,紡織科學期刊44期。 蔡金津,2001,「奈米顆粒及薄膜之溶膠-凝膠技術」,化工資訊月刊,第十五卷,pp.16-21。 中文論文 李柏澍,2006,「凝膠衍生穩定化氧化鋯之製備與特性分析」,淡江大學化學工程與材料工程學系,碩士論文。 林憶芳,1995,「利用UV/H2O2 光化學氧化法處理含酸性染料廢水之研究」,國立中興大學環境工程學研究所,碩士論文。 洪雲傑,2005,「以活性碳擔持二氧化鈦觸媒及其性質鑑定」,國立中興大學環境工程研究所,碩士論文。 陳姍玗、簡良榮、張嘉修、陳博彥,2000,「以混合菌相進行廢水褪色之生態工程研究」,第二十五屆廢水處理技術研討會論文集,pp.6-11。 郭啟祥,2003,「以電聚浮除法處理Acid Orang 6廢水之效能評估探討」,國立台灣大學環境工程研究所,碩士論文。 游勝傑、歐尚鑫、曾迪華,2004,「薄膜生物反應槽處理韓染整工業廢水之研究」,第九屆水再生及再利用研討會論文集,pp.245-256。 黃東斌,2005,「以紫外線/光觸媒過濾薄膜程序處理染料水溶液之研究」,國立台灣科技大學化學工程系研究所,碩士論文。 謝嘉鴻,2006,「新型光觸媒之製備及光催化染料廢水之研究」,國立雲林科技大學環境與安全衛生工程研究所,碩士論文。 魏漣邦、張敏超''、楊耿豪、許楹昇,2000,「化學混凝脫色最佳組合劑量之研究」,第二十五屆廢水處理技術研討會論文集pp.674-678。 羅卓卿,2008,「應用二氧化鈦及氧化鋯光觸媒還原二氧化碳之研究」,國立中山大學環境工程研究所,博士論文。 英文書籍 Reife, A and Freeman, H. S., 1996, " In environmental chemistry of dyes and pigments ", Eds., John Wiley&Sons, New York, Vol.11, pp. 255-292. Richard N. A. and Dan ronald O. K., 1971," Infrared spectra of inorganic compounds ", Academic press, Inc., Florida. Satterfield, C. N., 1992, " Heterogeneours catalysis in industrial practice ", 2nd edition, McGraw-Hil.l, Inc. New York. 英文期刊 Akkaya, G., Uzun, I. and Guzel, F., 2007, " Kinetics of the adsorption of Reactive Dyes by Chitin " Dyes and Pigments, Vol.73, pp.168-177. Balikdjian, J. P., Davidson, A., Launay, S., Eckert, H. and Che, M. J., 2000," Sintering and phase Transformation of V-loaded anatase materials containing bulk and surface V species ", Journal of Physical Chemistry B,Vol.104, pp.8931-8939. Bras, R., Gomes, A., Ferra, M. I. A., Pinheiro, H. M. and Goncalves, I. C., 2005," Monoazo and diazo dye decolourisation studies in a methanogeic UASB reactor ", Journal of Biotechnology, Vol.115, pp.57-66. Bujnova, U. M.,Todorovska, R.,Dimitrov, D. and Todorovsky, D., 2008, " Lanthanide-doped titanium dioxide layers as photocatalysts ", Applied Surface Science, Vol.254, pp.7296-7302. Chun, H. and Yizhong, W. 1999, " Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater ", Chemosphere, Vol.39(12), pp.2107-2115. Courtine, P. and Bordes, E., 1997, " Mode of arrangement of components in mixed vanadia catalyst and its bearing for oxidation catalysis ", Applied Catalysis A:General, Vol.157, pp.45-65. Diebold, U., 2002, " The surface science of titanium dioxide ", Surface Science Report, Vol.48, pp.53-229. Dhananjay, S. B., Sanjay, P. K., Sudhir, B. S. and Vishwas, G. P., 2004, " Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light ", Chemical Engineering Journal, Vol. 102, pp 283-290. Doede, C. M. and Walker, C. A., 1995, " Photochemical engineering ", Chemical Engineering, Vol.62(2), pp.159-178. Eren, Z. and Acar, F. N., 2006, " Adsorption of reactive black 5 from an aqueous solution:equilibrium and kinetic studies ", desalination. Vol.194, pp.1-10. Fujishima, A. and Honda, K., 1972, " Electrochemical photolysis of water at a Semiconductor electrode ", Nature, Vol.238, pp.37-38. Galinska, A. and Walendziewski, J., 2005, " Photocatalytic water splitting over Pt-TiO2 in the presence of sacrifical reagents ", Energy & Fuels, Vol.19(3), pp.1143-1147. Guzman, K. A. D., Taylor, M. R. and Banfield, J. F., 2006, " Environmental risks of nanotechnology:national nanotechnology initiative funding 2000-2004 ", Environmental Science & Technolog, Vol.40(5), pp.1401-1407. Hennezel, O., Pichat, P. and Ollis, D. F., 1998, " Benzene and toluene gas-phase photocatalytic degradation over H2O and HCL pretreated TiO2:by Products and Mechanisma ", Journal of Photochemistry and Photobiology A:chemistry, Vol.118., pp.197-204. Herrmann, J. M., 1999, " Heterogeneous photocatalysis : fundamentals and applications to the removal of various types of aqueous pollutants ", Catalysis Today, Vol.53, pp.115-129. Huang, C., You, W., Dang,L., Lei, Z., Sun, Z. and Zhang, L., 2006, " Effect of Nd3+ doping on photocatalytic activity of TiO2 nanoparticles for water decomposition to hydrogen ", Chinese Journal of Catalysis, Vol.27(3), pp.203-209. Ivanov, Y. G., Rudakova, E. V., Chamaev, V. N. and Matuskov, Y. E., 1989, " Effect of tjionsulfate and of sulfide on biochemical of oxidation of surface-active substances ", Fibre Chemistry, Vol.20, pp.306-309. Jang. S. J, Kim, H. G., Reddy, V. R., Bae, S. W., Ji, S. M. and Lee, J. S., 2005, " Photocatalytic water splitting over iron oxide nanoparticles intercalated in HTiNb(Ta)O5 layered compounds ", Journal of Catalysis, Vol.231, 213-222. Jia, J., Yang, J., Wang, W. and Wang, Z., 1999, " Treatment of dyeing wastewater with ACF electrodes ", Water Research, Vol.22, pp.881-884. Kim, Y. J., 2000, " In-Situ Electrochemical Impedance Measurement of Oxide Film on Type 304 Stainless Steel in High Temperature Water ", Corrosion, Vol. 56, pp.4. Klosek, S. and Raftery, D., 2001, " Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol ", Journal of Physical Chemistry B, Vol.105, pp.2815-2819. Kudo, A., 2006, " Development of photocatalyst materials forwater splitting ", International Journal of Hydrogen Energy, Vol.31, pp.197-202. Kuo, W. G., 1992, " Decolorizing dye wastewater with Fenton’s reagent ", Water Research, Vol.26, pp.881-886. Kyung, H., Lee, J. and Choi, W., 2005, " Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-iight illumination ", Environmental Science and Technology, Vol.39, pp.2376-2382. Liang, C. H., Li, F. B., Liu, C. S., Lu, J. L. and Wang, X. G., 2008, " The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of Orange I ", Dyes and Pigments, Vol.76, pp.477-484. Li, J., Li, L., Zheng, L., Xian, Y. and Jin, L., 2007, " Fabrication of TiO2/Ti electrode by laser-assisted anodic oxidation and its application on photoelectrocatalytic degradation of methylene blue ", Electrochimica Acta, Vol.51, pp.4942-4949. Linsebigler, A. L., Lu, G., Yates, J. T. and Jr., 1995, " Photocatalysis on TiO2 surface:principles, mechanisms,and selected results ", Chemical Reviews, Vol.95, pp.735-758. Music, S., Gotic, M. and Ivanda, S., 1997," Chemical and microstructral properties of TiO2 synthesized by sol-gel procedure ", Materials Science and Engineeting B, Vol.47, pp33-40. Navio, J. A., Macias, M., Colon, G., Sanchez-Soto, P. J., Augugliaro, V. and Palmisano, L., 1994," Combineduse of XPS, IR and EDAX techiniques for the characterization of ZrO2-SiO2 powders prepared by a sol-gel process ", Applied Surface Science.Vol.81, pp.325-329. Nguyen-Phan, T. D., Song, M. B. and Shin, W. E., 2009, " Removal efficiency of gaseous benzene using lanthanide-doped mesoporous ", Journal of Hazardous Materials, Vol.167, pp.75-81. Ozcan, A., Omeroglu, C., Erdogan, Y. and Ozcan, A. S., 2007, " Modification of bentonite with a cationic surfactant:An adsorption study of textile dye Reactive Blue 19 ", Journal of Hazardous Materials, Vol.140, pp.173-179. Quan, X., Zhao, Q.,Tan, H., Sang, X., Wang, F. and Dai, Y., 2009," Comparative study of lanthanide oxide doped titanium dioxide photocatalysts prepared by coprecipitation and sol–gel process ", Materials Chemistry and Physics, Vol.114, pp.90-98. Pan, C. C. and Wu, J. C. S., 2004, " Visible-light response Cr-doped TiO2 nano photocatalysts ", Journal of Chinese Colloid and Interface Society, Vol.26, pp.175-182. Reddy, E. P., Sun, B. and Smirniotis, P. G., 2004, "Transition metal modified TiO2-loaded MCM-41 catalysts for visible and UV-light driven photodegradation of aqueous organic pollutants ", Journal of Physical Chemistry B, Vol.108, pp.17198-17205. Rengaraj, S., Venkataraj, S., Yeon, J. W., Kim, Y., Li, X.Z. and Pang, G.K.H. 2007, " Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination ", Applied Catalysis B:Environmental, Vol.77, pp.157-165. Pan, C. C. and Wu, J. C. S., 2004, " Visible-light Response Cr-doped TiO2 Nano Photocatalysts ", Journal of Chinese Colloid and Interface Society, Vol.26, pp.175-182. Pizzolato, T. M., Carissimi, E., Machado, E. L. and Schneider, I.A.H., 2002," Colour removal with NaClO of dye wastewater from an agate-processing plant in Rio Grand do Sul, Brazil ", International Journal of Mineral Processing, Vol.65, pp.203-211. Pralrie, M. R., Evans, L. R., Stange, B. M. and Matinze, S. L., 1993, " An investigation of TiO2 photocatalysis for the treatment of water contaminated with metals and organic chemical ", Environmental Science & Technolog, Vol.27, pp.1776-1782. Saleh, N., Kim, H. J., Phenrat, T., Matyjaszewski, K., Tilton, R. D. and Lowry, G. V., 2008, " Inoic, strength and composition affect the mobility of surface-modified Fe0 nanoparticle in water-saturated sand columns ", Environmental Science & Technolog, Vol.42, pp.3349-3355. Salvador, P., Gonzalez Garcia. and M. L., 1992," The influence of oxygen vacancies on the kinetics of water photoelectrolysis at (001) n-TiO2 rutile ", Journal of Electroanalytical Chemistry, Vol.325, pp.369-376. Sanjines, R., Tang, H., Berger, H., Gozzo, F., Margaritondo, G. and Levy, F.,1994," Electronic structure of TiO2 anatase oxide " Journal of Applied Physics, Vol.75, pp.2945-2951. Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E. and Hidaka, H., 1995, " Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol:chemical evidence for electron and hole transfer between coupled semiconductors ", Journal of Photochemistry and Photobiology A:Chemistry, Vol.85., pp.247-255. Skoog, D. A. and West, D. M., 1994, " Fundamentals of analytical chemistry " CBS college publishing, Vol.4, pp.528-529. Slinkard, W. E. and DeGroot, P. B., 1981," Vanadium-Titanium Oxide catalysts for oxidation of butene to acetic acid ", Journal of Catalysis, Vol.68, pp.423. Sonawane, R. S., Hegde, S. G. and Dongare, M. K., 2002, " Preparation of titanium(Ⅳ) oxide thin film photocatalyst by sol-gel dip coating ", Materials Chemistry and Physics, Vol.77, pp.744-750. Štengl, V., Bakardjieva, S. and Murafa, N., 2009, " Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles ", Materials Chemistry and Physics, Vol.114, pp.217-226. Tang, H., Prasad, R., Sanjines, R. and Levy. F., 1995, " TiO2 anatase thin films as gas sensors ", Sensors and Actuators B, Vol.26-27, pp.71-75. Tunay, O., 1990, " Pretreatment of Textili Processing Wastewater ", Water Science and Technology, Vol.22, pp.17-20. Štengl, V., Snejana Bakardjieva, N. M., 2006, " Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles " Materials Chemistry and Physics, Vol.114, pp.217-226. Weifeng, Y. and Jinhua, Y., 2007, " Photocatalytic properties of a new photocatalyst K2Sr1.5Ta3O10 ", Chemical Physics Letters, Vol.435, pp.96-99. Xie, Y. and Yuan, C., 2004, " Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation ", Applied surface science, Vol.221, pp.17-24. Xu, J., Ao, Y., Fu, D. and Yuan, C., 2009, " Study on photocatalytic performance and degraddation kinetics of X-3B with lanthanide-modified titanium dioxide under solar and UV illumination ", Journal of Hazardous Materials, Vol.164, pp.762–768. El-Bahy, Z. M., Ismail, A. A. and Mohamed, R. M., 2009, " Enhancement of titania by doping rare earth for photodegradation of organic dye(Direct Blue I)",Journal of Hazardous Materials, Vol.166, pp.138-143. Zhou, J., Takeuchi, M., Ray, A. K., Anpo, M. and Zhao, X. S., 2007, " Enhancement of photocatalytic activity of P25 TiO2 by Vanadium-ion implantation under visible light irradiation ", Journal of Colloid and Interface Science, Vol.311, pp. 497-501.
利用溶膠凝膠法製備光觸媒,以鑭系離子(Nd、Sm、La)摻雜於TiO2進行改質,其光催化活性以Acid Red 27作為光解目標污染物。透過場發射掃描式電子顯微鏡(FE-SEM)、化學分析電子能譜儀(ESCA)、X-ray繞射儀(XRD)及表面零電荷點pH值(pHzpc)進行分析及研究TiO2之結構性質,並經由Acid Red 27於紫外光及可見光之鑭系金屬改質後的觸媒進行光催化活性與吸附能力實驗。
經由FE-SEM及XRD等特性分析結果顯示,製備TiO2光觸媒其結構均勻,顆粒粒徑約為30 nm,結晶晶型以銳鈦礦為主;而由鑭系金屬改質之光觸媒顆粒大小一致,均小於15 nm,晶型轉變為銳鈦礦與金紅石複合型晶型,且隨著鑭系金屬的添加量提升金紅石的比例也隨之增加。

Lanthanide ions (Nd3+﹐Sm3+ and La3+) doped TiO2 nanoparticles were successfully synthesized by sol-gel method. Their photocatalytic activities were evaluated that using Acid Red 27(AR27) as a decomposition objective. The structural features of TiO2 and lanthanide ions/TiO2 were investigated by Field emission scanning electron microscope (FE-SEM), Electron spectroscopy for chemical analysis system (ESCA), X-ray diffractometer(XRD) and Partical size and zeta potential analyzer(pHzpc). The adsorption abilities and photocatalytic activity of Lanthanide ions-TiO2 were evaluated by AR 27 degradation under UV light and visible light illumination.
The XRD pattern of TiO2 presents is only anatase phases, but Lanthanide-TiO2 presents are both anatase and rutile phases. The contents of the rutile phase increased with increase of the molar ratio of Lanthanide-TiO2. The SEM image of the Lanthanide-TiO2 showed particles of regular shape with smaller size <15 nm compare to the TiO2, which presented uniform particles of spherical structure and larger size about 30 nm.
The valence number of Nd-TiO2 photocatalyst were not altered and Neodymium on TiO2 structure was in the status of Nd0 and Nd3+;Samarium on TiO2 structure was in the status of Sm3+;Lanthanum on TiO2 structure was in the status of La3+. The pHzpc of Lanthanide-TiO2 phtotcatalyst were hight than pure TiO2. The result presented that the Lanthanide-TiO2 is powerful to treat dye ,color and TOC. In the FTIR spectrum, the peaks of N=N double bond was eliminated after the Lanthanide-TiO2 reaction.
Compare with TiO2, the Lanthanide-TiO2 have better response of UV light and visible light. In UV light and visible light system, at pH 4 and 7 have better discoloration and mineralization.
其他識別: U0005-2006201122423100
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.