Please use this identifier to cite or link to this item:
標題: 運用血清白蛋白胼合物為生物指標探討體內累積之雌性激素-3,4-苯醌代謝物作為乳癌風險預測指標之研究
Investigation of the cumulative body burden of estrogen-3,4-quinone as a predictor of breast cancer risk using albumin adducts as biomarkers
作者: 林慶全
Lin, Ching-Chuan
關鍵字: biomarker;蛋白質胼合物;protein adduct;estrogen;naphthalene;polycyclic aromatic hydrocarbon;雌性激素;萘多環芳香族碳氫化合物
出版社: 環境工程學系所
引用: 魏子翰 (2009) 同步分析人類血清白蛋白中萘及雌性激素醌類代謝物之蛋白質胼合物。國立中興大學環境工程研究所碩士論文,台灣台中。 楊宗洲 (2010) 運用蛋白質胼合物為生物指標評估多環芳香族碳氫化合物及戴奧辛之環境暴露對雌性激素之活性醌類代謝物累積組劑量之影響。國立中興大學環境工程研究所碩士論文,台灣台中。 劉致辰 (2011) 探討乳癌病患雌性激素代謝基因之基因多型性與去鹼基核酸背景值之相關性。國立中興大學環境工程研究所碩士論文,台灣台中。 蘇弘傑 (2011) 運用血紅蛋白胼合物為生物指標來評估多環芳香族碳氫化合物之環境暴露對雌性激素醌類代謝物之累積組織劑量。國立中興大學環境工程研究所碩士論文,台灣台中。 Arcaro, K.F., O''Keefe, P.W., Yang, Y., Clayton, W., Gierthy, J.F., 1999. Antiestrogenicity of environmental polycyclic aromatic hydrocarbons in human breast cancer cells. Toxicology 133, 115-127. Badawi, A.F., Cavalieri, E.L., Rogan, E.G., 2001. Role of human cytochrome P450 1A1, IA2, 1B1, and 3A4 in the 2-, 4-, and 16 alpha-hydroxylation of 17 beta-estradiol. Metabolism 50, 1001-1003. Bagchi, D., Bagchi, M., Balmoori, J., Vuchetich, P.J., Stohs, S.J., 1998. Induction of oxidative stress and DNA damage by chronic administration of naphthalene to rats. Res Commun Mol Pathol Pharmacol 101, 249-257. Bagchi, M., Balmoori, J., Ye, X., Bagchi, D., Ray, S.D., Stohs, S.J., 2001. Protective effect of melatonin on naphthalene-induced oxidative stress and DNA damage in cultured macrophage J774A.1 cells. Mol Cell Biochem 221, 49-55. Bolton, J.L., Thatcher, G.R., 2008. Potential mechanisms of estrogen quinone carcinogenesis. Chem Res Toxicol 21, 93-101. Bonner, M.R., Lee, W.J., Sandler, D.P., Hoppin, J.A., Dosemeci, M., Alavanja, M.C., 2005. Occupational exposure to carbofuran and the incidence of cancer in the Agricultural Health Study. Environ Health Perspect 113, 285-289. Burdick, A.D., Davis, J.W., 2nd, Liu, K.J., Hudson, L.G., Shi, H., Monske, M.L., Burchiel, S.W., 2003. Benzo(a)pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells. Cancer Res 63, 7825-7833. Butterworth, M., Lau, S.S., Monks, T.J., 1996. 17 beta-estradiol metabolism by hamster hepatic microsomes: comparison of catechol estrogen O-methylation with catechol estrogen oxidation and glutathione conjugation. Chem Res Toxicol 9, 793-799. Cao, K., Stack, D.E., Ramanathan, R., Gross, M.L., Rogan, E.G., Cavalieri, E.L., 1998. Synthesis and structure elucidation of estrogen quinones conjugated with cysteine, N-acetylcysteine, and glutathione. Chem Res Toxicol 11, 909-916. Cavalieri, E., Chakravarti, D., Guttenplan, J., Hart, E., Ingle, J., Jankowiak, R., Muti, P., Rogan, E., Russo, J., Santen, R., Sutter, T., 2006. Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta 1766, 63-78. Chen, D.R., Chen, S.T., Wang, T.W., Tsai, C.H., Wei, H.H., Chen, G.J., Yang, T.C., Lin, C., Lin, P.H., 2011. Characterization of estrogen quinone-derived protein adducts and their identification in human serum albumin derived from breast cancer patients and healthy controls. Toxicol Lett 202, 244-252. Cherng, S.H., Lin, S.T., Lee, H., 1996. Modulatory effects of polycyclic aromatic hydrocarbons on the mutagenicity of 1-nitropyrene: a structure-activity relationship study. Mutat Res 367, 177-185. Chien, Y.C., Liang, C.P., Shih, P.H., 2009. Emission of polycyclic aromatic hydrocarbons from the pyrolysis of liquid crystal wastes. J Hazard Mater 170, 910-914. Clemons, M., Goss, P., 2001. Estrogen and the risk of breast cancer. N Engl J Med 344, 276-285. Convert, O., Van Aerden, C., Debrauwer, L., Rathahao, E., Molines, H., Fournier, F., Tabet, J.C., Paris, A., 2002. Reactions of estradiol-2,3-quinone with deoxyribonucleosides: possible insights in the reactivity of estrogen quinones with DNA. Chem Res Toxicol 15, 754-764. Dawling, S., Roodi, N., Mernaugh, R.L., Wang, X., Parl, F.F., 2001a. Catechol-O-methyltransferase (COMT)-mediated metabolism of catechol estrogens: comparison of wild-type and variant COMT isoforms. Cancer Res 61, 6716-6722. Dawling, S., Roodi, N., Mernaugh, R.L., Wang, X.H., Parl, F.F., 2001b. Catechol-O-methyltransferase (COMT)-mediated metabolism of catechol estrogens: Comparison of wild-type and variant COMT isoforms. Cancer Research 61, 6716-6722. Fang, G.C., Chang, C.N., Wu, Y.S., Fu, P.P., Yang, I.L., Chen, M.H., 2004. Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung. Sci Total Environ 327, 135-146. Farmer, P.B., Singh, R., Kaur, B., Sram, R.J., Binkova, B., Kalina, I., Popov, T.A., Garte, S., Taioli, E., Gabelova, A., Cebulska-Wasilewska, A., 2003. Molecular epidemiology studies of carcinogenic environmental pollutants. Effects of polycyclic aromatic hydrocarbons (PAHs) in environmental pollution on exogenous and oxidative DNA damage. Mutat Res 544, 397-402. Freedman, L.S., Clifford, C., Messina, M., 1990. Analysis of dietary fat, calories, body weight, and the development of mammary tumors in rats and mice: a review. Cancer Res 50, 5710-5719. Fujii-Kuriyama, Y., Mimura, J., 2005. Molecular mechanisms of AhR functions in the regulation of cytochrome P450 genes. Biochem Biophys Res Commun 338, 311-317. Greene, J.F., Zheng, J., Grant, D.F., Hammock, B.D., 2000. Cytotoxicity of 1,2-epoxynaphthalene is correlated with protein binding and in situ glutathione depletion in cytochrome P4501A1 expressing Sf-21 cells. Toxicol Sci 53, 352-360. Guengerich, F.P., Shimada, T., 1991. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol 4, 391-407. Huang, C.S., Chern, H.D., Chang, K.J., Cheng, C.W., Hsu, S.M., Shen, C.Y., 1999. Breast cancer risk associated with genotype polymorphism of the estrogen-metabolizing genes CYP17, CYP1A1, and COMT: a multigenic study on cancer susceptibility. Cancer Res 59, 4870-4875. Jenks, S., 2010. Researchers explore mechanisms that may link obesity and cancer. J Natl Cancer Inst 102, 519-521. Krajinovic, M., Ghadirian, P., Richer, C., Sinnett, H., Gandini, S., Perret, C., Lacroix, A., Labuda, D., Sinnett, D., 2001. Genetic susceptibility to breast cancer in French-Canadians: role of carcinogen-metabolizing enzymes and gene-environment interactions. Int J Cancer 92, 220-225. Kulie, T., Slattengren, A., Redmer, J., Counts, H., Eglash, A., Schrager, S., 2011. Obesity and women''s health: an evidence-based review. J Am Board Fam Med 24, 75-85. Lin, P.H., Chen, D.R., Wang, T.W., Lin, C.H., Chuang, M.C., 2009. Investigation of the cumulative tissue doses of naphthoquinones in human serum using protein adducts as biomarker of exposure. Chem Biol Interact 181, 107-114. Lin, P.H., Nakamura, J., Yamaguchi, S., Asakura, S., Swenberg, J.A., 2003. Aldehydic DNA lesions induced by catechol estrogens in calf thymus DNA. Carcinogenesis 24, 1133-1141. Lin, P.H., Waidyanatha, S., Pollack, G.M., Rappaport, S.M., 1997. Dosimetry of chlorinated quinone metabolites of pentachlorophenol in the livers of rats and mice based upon measurement of protein adducts. Toxicol Appl Pharmacol 145, 399-408. Mailander, P.C., Meza, J.L., Higginbotham, S., Chakravarti, D., 2006. Induction of A.T to G.C mutations by erroneous repair of depurinated DNA following estrogen treatment of the mammary gland of ACI rats. J Steroid Biochem Mol Biol 101, 204-215. Mitrunen, K., Hirvonen, A., 2003. Molecular epidemiology of sporadic breast cancer. The role of polymorphic genes involved in oestrogen biosynthesis and metabolism. Mutat Res 544, 9-41. Miyoshi, Y., Noguchi, S., 2003. Polymorphisms of estrogen synthesizing and metabolizing genes and breast cancer risk in Japanese women. Biomed Pharmacother 57, 471-481. Parkin, D.M., Bray, F., Ferlay, J., Pisani, P., 2005. Global cancer statistics, 2002. CA Cancer J Clin 55, 74-108. Parl, F.F., Egan, K.M., Li, C., Crooke, P.S., 2009. Estrogen exposure, metabolism, and enzyme variants in a model for breast cancer risk prediction. Cancer Inform 7, 109-121. Poirier, M.C., Santella, R.M., Weston, A., 2000. Carcinogen macromolecular adducts and their measurement. Carcinogenesis. 21(3), 353-359. Preuss, R., Angerer, J., Drexler, H., 2003. Naphthalene--an environmental and occupational toxicant. Int Arch Occup Environ Health 76, 556-576. Pufulete, M., Battershill, J., Boobis, A., Fielder, R., 2004. Approaches to carcinogenic risk assessment for polycyclic aromatic hydrocarbons: a UK perspective. Regul Toxicol Pharmacol 40, 54-66. Rodenhuis, S., Slebos, R.J., 1992. Clinical significance of ras oncogene activation in human lung cancer. Cancer Res 52, 2665s-2669s. Rogan, E., Badawi, A., Devanesan, P., Meza, J., Edney, J., West, W., Higginbotham, S., Cavalieri, E., 2003. Relative imbalances in estrogen metabolism and conjugation in breast tissue of women with carcinoma: potential biomarkers of susceptibility to cancer. Carcinogenesis. 24(4):697-702. Rose, D.P., Komninou, D., Stephenson, G.D., 2004. Obesity, adipocytokines, and insulin resistance in breast cancer. Obes Rev 5, 153-165. Sanderson, J.T., Slobbe, L., Lansbergen, G.W., Safe, S., van den Berg, M., 2001. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and diindolylmethanes differentially induce cytochrome P450 1A1, 1B1, and 19 in H295R human adrenocortical carcinoma cells. Toxicol Sci 61, 40-48. Shimada, T., Hayes, C.L., Yamazaki, H., Amin, S., Hecht, S.S., Guengerich, F.P., Sutter, T.R., 1996. Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res 56, 2979-2984. Skipper, P.L., Tannenbaum, S.R., 1990. Protein adducts in the molecular dosimetry of chemical carcinogens. Carcinogenesis 11, 507-518. Spink, D.C., Wu, S.J., Spink, B.C., Hussain, M.M., Vakharia, D.D., Pentecost, B.T., Kaminsky, L.S., 2008. Induction of CYP1A1 and CYP1B1 by benzo(k)fluoranthene and benzo(a)pyrene in T-47D human breast cancer cells: roles of PAH interactions and PAH metabolites. Toxicol Appl Pharmacol 226, 213-224. Swenberg, J.A., Lu, K., Moeller, B.C., Gao, L., Upton, P.B., Nakamura, J., Starr, T.B., 2011. Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment. Toxicol Sci 120 Suppl 1, S130-145. Tingle, M.D., Pirmohamed, M., Templeton, E., Wilson, A.S., Madden, S., Kitteringham, N.R., Park, B.K., 1993. An investigation of the formation of cytotoxic, genotoxic, protein-reactive and stable metabolites from naphthalene by human liver microsomes. Biochem Pharmacol 46, 1529-1538. Tornqvist, M., Fred, C., Haglund, J., Helleberg, H., Paulsson, B., Rydberg, P., 2002. Protein adducts: quantitative and qualitative aspects of their formation, analysis and applications. J Chromatogr B Analyt Technol Biomed Life Sci 778, 279-308. Trentham-Dietz, A., Newcomb, P.A., Storer, B.E., Longnecker, M.P., Baron, J., Greenberg, E.R., Willett, W.C., 1997. Body size and risk of breast cancer. Am J Epidemiol 145, 1011-1019. U.S. EPA., 1987. Locating and estimating air emission from sources of polycyclic organic matter (POM) EPA-45014-84-007. van der Schroeff, J.G., Evers, L.M., Boot, A.J., Bos, J.L., 1990. Ras oncogene mutations in basal cell carcinomas and squamous cell carcinomas of human skin. J Invest Dermatol 94, 423-425. Waidyanatha, S., Rappaport, S.M., 2008. Hemoglobin and albumin adducts of naphthalene-1,2-oxide, 1,2-naphthoquinone and 1,4-naphthoquinone in Swiss Webster mice. Chem Biol Interact 172, 105-114. Waidyanatha, S., Troester, M.A., Lindstrom, A.B., Rappaport, S.M., 2002. Measurement of hemoglobin and albumin adducts of naphthalene-1,2-oxide, 1,2-naphthoquinone and 1,4-naphthoquinone after administration of naphthalene to F344 rats. Chem Biol Interact 141, 189-210. Watanabe, J., Shimada, T., Gillam, E.M., Ikuta, T., Suemasu, K., Higashi, Y., Gotoh, O., Kawajiri, K., 2000. Association of CYP1B1 genetic polymorphism with incidence to breast and lung cancer. Pharmacogenetics 10, 25-33. Whitlock, J.P., Jr., 1999. Induction of cytochrome P4501A1. Annu Rev Pharmacol Toxicol 39, 103-125. Yager, J.D., Davidson, N.E., 2006a. Estrogen carcinogenesis in breast cancer. N Engl J Med 354, 270-282. Yager, J.D., Davidson, N.E., 2006b. Mechanisms of disease: Estrogen carcinogenesis in breast cancer. New England Journal of Medicine 354, 270-282. Yang, H.H., Chien, S.M., Chao, M.R., Lin, C.C., 2005. Particle size distribution of polycyclic aromatic hydrocarbons in motorcycle exhaust emissions. J Hazard Mater 125, 154-159. Yang, H.H., Lai, S.O., Hsieh, L.T., Hsueh, H.J., Chi, T.W., 2002. Profiles of PAH emission from steel and iron industries. Chemosphere 48, 1061-1074. Zhu, B.T., Conney, A.H., 1998. Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 19, 1-27. Zmirou, D., Masclet, P., Boudet, C., Dor, F., Dechenaux, J., 2000. Personal exposure to atmospheric polycyclic aromatic hydrocarbons in a general adult population and lung cancer risk assessment. J Occup Environ Med 42, 121-126.
17β-雌二醇-2,3-醌 (E2-2,3-Q) 和17β-雌二醇-3,4-醌 (E2-3,4-Q)與1,2-萘醌 (1,2-NPQ) 和 1,4-萘醌 (1,4-NPQ)為體內雌性激素與萘的活性醌類代謝物,它們被認為是反應體內雌性激素與萘誘導細胞毒性的物質。研究目的是建立同步分析雌性激素與萘之醌類蛋白質胼合物的方法,並測量台灣女性乳癌患者 (n=98) 血清白蛋白胼合物之背景值。分析結果顯示,乳癌患者體內血清白蛋白1,2-NPQ-Alb和1,4-NPQ-Alb所偵測之背景值範圍分別為ND(Not Detection)-568及ND (Not Detection)-397 pmol/g。此外,E2-2,3-Q-4-1-Alb,E2-2,3-Q-4-S-Alb及E2-3,4-Q-2-S-Alb所偵測之背景值範圍分別為ND(Not Detection),92.0-1320 及 208-1390 pmol/g 。E2-2,3-Q-4-S-Alb及E2-3,4-Q-2-S-Alb 具有差異顯著(r=0.847, p < 0.001)。1,2-NPQ-Alb 及1,4-NPQ-Alb 具有差異顯著(r=0.495, p < 0.001)。乳癌患者體內雌性激素醌類蛋白質胼合物與萘醌類蛋白質胼合物間無相關性。但在年齡小於50歲且BMI小於27的族群,其BMI與E2-2,3-Q-4-S-Alb(r=-0.364, p<0.001)及E2-3,4-Q-2-S-Alb (r=-0.395, p<0.001) 之背景值呈負相關性。但病患之雌性激素代謝活化酵素基因多形性與雌性激素醌類代謝物之血清白蛋白胼合物間皆無相關性。然而,研究結果顯示乳癌患者相較於健康人之控制組,其E2-3,4-Q-2-S-Alb之背景值約高出3倍左右。整體而言,本研究之結論為乳癌患者體內E2-3,4-Q-2-S-Alb之體內累積劑量為一乳癌風險之預測指標。
其他識別: U0005-2108201122515100
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.