Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5034
標題: 以固相微萃取技術評估土壤中PAHs-萘、菲和芘之生物有效性
Bioavailability Assessment of PAH-Contaminated Soil with Solid Phase Microextraction
作者: 陳冠憓
Chen, Kuan-Hui
關鍵字: 多環芳香族化合;polycyclic aromatic hydrocarbons (PAHs);生物有效性;污染物共存;固相微萃取;bioavailability;multi-contaminants;solid phase microextraction (SPME)
出版社: 環境工程學系所
引用: 王一雄 (1997) 土壤環境污與農藥,文海書局,台北 王瑞彥 (2008) 以植物復育技術處理受多環芳香烴芘污染土壤之研究,國立中山大學海洋環境及工程學系,博士論文 曲可喬 (2007) 以固相微萃取評估萘污染土壤生物可及性並預測生物復育之成效,國立中興大學環境工程學系,碩士論文 行政院勞工委員會及工業技術研究院(2001)物質安全資料表CAS.No. 00091-20-3 李孟哲 (2002) 純化菌株對於多環芳香族碳氫化合物-萘菲分解能力之研究,國立中興大學環境工程學系,碩士論文 邱明良 (2000) 受多環芳香族碳氫化合物-萘、菲污染土壤之生物復育研究,國立中興大學環境工程學系,碩士論文 郭魁士(1980) 土壤實習,中國書局 陳致谷,張添晉(1995) 土壤污染生物復育之應用及展望,工業污染防治,第53 期,113-138 曹志興 (2007) 預測萘污染土壤之生物可及性研究,國立中興大學環境工程學系,碩士論文 黃敬德、謝有容 (1998) 固相微萃取技術之原理及其應用化學,56卷第4期,311-318 黃慧貞 (2006) 土壤有機質特異組成及含量對非離子有機化合物吸持行為之研究,國立中央大學環境工程研究所,博士論文 劉祥兆 (2011) 土壤特性對芳香族化合物生物有效性之影響:固相微萃取技術對生物復育成效之預測,國立中央大學環境工程研究所,博士論文 盧至人(1994) “處置土壤污染區之策略運用”污染土地之整治與永續利用研討會論文集,7-1~7-5 盧至人(1997)地下水的污染整治,國立編譯館,台北 盧至人(2002)現地復育技術,台灣土壤及地下水環境保護協會簡訊,第五期,3-5 環保署環檢所 (2002b) NIEA M167.00C,超音波萃取法 環保署環檢所 (2005) NIEA S102.61B,土壤採樣方法 謝文賓(1993) 多環芳香族化合物(PAHs)在土壤中之生物降解作用,臺灣大學環境工程研究所,碩士論文 蘇世昌 (1999) 受多環芳香族化合物-萘污染環境之生物復育可行性研究,國立中興大學環境工程學系,碩士論文 Alexander, and M. (1995) How toxic are toxic chemicals in soil? Environ. Sci. Technol. 29, 2713-2717 Alexander, and M. (2000) Aging, bioavailability, and overestimation of risk from environmental contaminants. Environ. Sci. Technol. 34, 4259-4265 Allen, I. J., K. T. Semple, R. Hare, and B. J. Reid (2006) Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction. Environ. Pollut. 144, 562-571 Aronstein, B. N., T. Y. Calvillo, and M. Alexander (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ. Sci. Technol. 25, 1728-1731 Aulenta, F., S. Rossetti, M. Majone, and V. Tandoi (2004) Detection and quantitative estimation of Dehalococcoides spp. in a dechlorinating bioreactor by a combination of Fluorescent In Situ Hybridization (FISH) and kinetic analysis. Appl. Microbiol. Biotechnol. 64, 206-212 Autry, R. A. and G. M. Ellis (1992) Bioremediation : a effective remedial alternative for petroleum hydrocarbon-contaminated soil. Enviorn. Progress. 11, 218-323 Backe, C., I. T. Cousins, and P. Larsson (2004) PCB in soils and estimated soil-air exchange fluxes of selected PCB congeners in the south of Sweden. Environ. Pollut. 128, 59-72 Baldock, J. A., J. M. Oades, A. G. Waters, X. Peng, A. M. Vassallo, and M. A. Wilson (1992) Aspects of the chemical structure of soil organic materials as revealed by solid-state C13 NMR spectroscopy. Biog. Chem. 16, 1-42 Bergknut M., E. Sehlin, S. Lundstedt, P. L. Andersson, P. Haglund, and M. Tysklind (2007) Comparison of techniques for estimating PAH bioavailability: Uptake in Eisenia fetida, Passive samplers and leaching using various solvents and additives. Environmental pollution 145, 154-160 Burgos, W. D., N. Pisutpaisal, M. Tuntoolavest, J. Chorover, and R. F. Unz (2000) Biodegradation of 1-naphthol in the presence of humic acid. Environ. Eng. Sci. 17, 343-351 Cameotra, S. S., H. D. Singh, A. K. Hazarika, and J. N. Baruah (1983) Mode of uptake of insoluble solid substrates by microorganisms. II. Uptake of solid n-alkanes by yeast and bacterial species. Biotechnol. Bioeng. 25, 2945-2956 Carmichael, L. M., R. F. Christman, and F. K. Pfaender (1997) Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soils. Environ. Sci. Technol. 31, 126-132 Chen, Y. and J. Pawliszyn (2003) Time-weighted average passive sampling with a solid-phase microextraction device. Anal. Chem. 75, 2004-2010 Chen, Y. and J. Pawliszyn (2004) Solid-phase microextraction field sampler. Anal. Chem. 76, 6823-6828 Chiou, C. T. and D. S. Thomas (1985) Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity. Environ. Sci. Technol. 19, 1196-1200 Chiou, C. T., S. E. McGroddy, and D. E. Kile (1998) Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ. Sci. Technol. 32, 264-269 Chung, J., R. Brown, and B. E. Rittmann (2008) Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor. Environ. Sci. Technol. 42, 477-483 Chung, N. and M. Alexander (1998) Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils. Environ. Sci. Technol. 32, 855-860 Chung, N. and M. Alexander (1998) Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils. Environ. Sci. Technol. 32, 855-860 Chung, N. and M. Alexander (2002) Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere 48, 109-115 Coble, and R. L. (1968) “Development of microstructures in ceramic systems” 8-80 in Ceramic Microstructures, Fulrath R. M.and Pask. J. A. (Ed.) Wiley, New York, U.S.A. Conder, J. M. and T. W. la Point (2005) Solid phase microextraction for predicting the bioavailability of 2,4,6-trinitrotoluene and its primary transformation products in sediment and water. Environ. Toxicol. Chem. 24, 1059-1066 Conder, J. M., W. L. P. Thomas, R. L. Guilherme, and J. A. Steevens (2003) Nondestructive, minimal-disturbance, direct-burial solid-phase microextraction fiber technique for measuring TNT in sediment. Environ. Sci. Technol. 37, 1625-1632 Cornelissen, G., H. Rigterink, M. M. A. Ferdinandy, and P. C. M. van Noort (1998b) Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environ. Sci. Technol. 32, 966-970 Cornelissen, G., M. van der Pal, P. C. M. van Noort, and H. A. J. Govers (1999) Competitive effects on the slow desorption of organic compounds from sediments. Chemosphere 39, 1971-1981 Cornelissen, G., P. C. M. van Noort, and H. A. J. Grovers (1997b) Desorption kinetics of chlorobenezenes, polycyclic aromatic hydrocarbons, and polychlorinated biophenyls:sediment ectraction with tenax and effects of contact time. J. Environ. Toxicol. Chem. 16, 1351-1357 Cornelissen, G., P. C. M. van Noort, J. R. Parsons, and H. A. J. Govers (1997a) Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments. Environ. Sci. Technol. 31, 454-460 Courter, L. A., T. Musafia-Jeknic, K. Fischer, R. Bildfell, J. Giovanini, C. Pereira, and W. M. Baird (2007) Urban dust particulate matter alters PAH-induced carcinogenesis by inhibition of CYP1A1 and CYP1B1. Toxicol. Sci. 95, 63-73 Cuypers, C. (2001) Bioavailability of polycyclic aromatic hydrocarbons in soils and sediments. Ph.D. Dissertation, Wageningen University, Wageningen, Then Netherlands Cuypers, C., T. Grotenhuis, J. Joziasse, and W. Rulkens (2000) Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environ. Sci. Technol. 34, 2057-2063 Cuypers, C., T. Pancras, T. Grotenhuis, and W. Rulkens (2002) The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-beta-cyclodextrin and Triton X-100 extraction techniques. Chemosphere. 46, 1235-1245 De Fátima Alpendurada M. (2000) Solid-phase microextraction: a promising technique for sample preparation in environmental analysis. Journal of Chromatography A 889, 3-14 Dewsbury, P., S. F. Thornton, and D. N. Lerner (2003) Improved analysis of MTBE, TAME, and TBA in petroleum fuel-contaminated groundwater by SPME using deuterated internal standards with GC-MS. Environ. Sci. Technol. 37, 1392-1397 Dibble, J. T. and R. Bartha (1979) Effect of iron on biodegration of petroleum in seawater. App. Enviorn. Micobiol. 31, 544-550 Dron, L., R. Garcia, and E. Millan (2002) Optimization of headspace solid-phase microextraction by means of an experimental design for the determination of methyl tert.-butyl ether in water by gas chromatography-flame ionization detection. J. Chromatogr. A. 963, 259-264 Ehlers, L. J. and R. G. Luthy (2003) Contaminant bioavailability in soil and sediment. Environ. Sci. Technol. 37, 295A-302A Erstfeld, K. M. and C. Y. Chen (1998) Comparson of Supercritical Fluid and Soxhlet Extraction Methods for the Determination of Chlorothalonil from Cranberry Bog Soils. J.Agric Food Chem., 46, 499-503 Fitzgerald G., K. MacNamara, M. A. Stack (2000) Characterisation of whiskeys using solid-phase microextraction with gas chromatography-mass spectrometry. J. Chromatogr. A. 896, 351-359 Gao Y.Z., and Zhu L.Z. (2004) Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere , 55, 1169-78 Gomez-Eyles J. L., C. D. C., and M. E. Hodson (2010) Relative proportions of polycyclic aromatic hydrocarbons differ between accumulation bioassays and chemical methods to predict bioavailability. Environmental Pollution. 158, 278-284 Gomez-Eyles, J. L., C. D. Collins, and M. E. Hodson (2010) Relative proportions of polycyclic aromatic hydrocarbons differ between accumulation bioassays and chemical methods to predict bioavailability. Environ. Pollut. 158, 278-284 Gordon, A. S. and F. J. Millero (1985) Adsorption-mediated decrease in the biodegradation rate of organic compounds. Microbiol. Ecology. 11, 289-298 Gozgit, J. M., K. M. Nestor, M. J. Fasco, B. T. Pentecost, and K. F. Arcaro (2004) Differential action of polycyclic aromatic hydrocarbons on endogenous estrogen-responsive genes and on a transfected estrogen-responsive reporter in MCF-7 cells. Toxical. Appl. Pharmacol. 196, 58-67 Hatzinger, P. B. and M. Alexander (1997) Biodegradation of organic compounds sequestered in organic solids or in nanopores within silica particles. Environ. Toxicol. Chem. 16, 2215-2221 Hawthorne, S. B., D. G. Poppendieck, C. B. Grabanski, and R. C. Loehr (2001) PAH release during water desorption, supercritical carbon dioxide extraction, and field bioremediation. Environ. Sci. Technol. 35, 4577-4583 Herrchen, M., R. Debus, and R. Pramanik-Strehlow (1997) Bioavailability as a key property in terrestrial ecotoxicity assessment and evaluation. Fraunhofer IRB Verlag Stuttgart Germany Holman, H. Y. K., N. Nieman, D. L. Sorensen, C. D. Miller, M. C. Martin, T. Borch, R. McKinney, and R. C. Sims (2002) Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies. Environ. Sci. Technol. 36, 1276-1280 Hu, X., J. Liu, Q. Zhou, S. Lu, R. Liu, L. Cui, D. Yin, P. Mayer, and G. Jiang (2010) Bioavailability of organochlorine compounds in aqueous suspensions of fullerene: Evaluated with medaka (Oryzias latipes) and negligible depletion solid-phase microextraction. Chemosphere. 80, 693-700 Huesemann, M. H., T. S. Hausmann, and T. J. Fortman (2002) Microbial factors rather than bioavailability limit the rate and extent of PAH biodegradation in aged crude oil contaminated model soils. Bioremed. J. 6, 321-336 Huesemann, M. H., T. S. Hausmann, and T. J. Fortman (2004) Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegrad. 15, 261-274 Hwang S., and T. J. Cutright (2002) Biodegradability of aged pyrene and phenanthrene in a natural soil. Chemosphere. 47, 891-899 Joner E.J., S.C. Corgie, N. Amellal, and C. Leyval (2002) Nutritional contributions to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere. Soil Biol. Biochem. 34, 859-864 Jordan, R. N., E. P. Nichols, and A. B. Cunningham (1999) The role of surfactant sorption in promoting the bioavailability of nutrients localized at the solid-water interface. Water Sci. Technol. 39, 91-98 Junge, and C. E. (1977) Fate of pollutants in the air and water environments. Environ. Sci. Technol. 7-26 Kelsey, J. W., and M. Alexander (1997) Declining bioavailability and inappropriate estimation of risk of persistent compounds. Environ. Toxicol. Chem. 16, 582-585 Khaled, A., and J. Pawliszyn (2000) Time-weighted average sampling of volatile and semi-volatile airborne organic compounds by the solid-phase microextraction device. J. Chromatogr. A. 892, 455-467 Koziel, J., J. Noah, and J. Pawliszyn (2001) Field sampling and determination of formaldehyde in indoor air with solid-phase microextraction and on-fiber derivatization. Environ. Sci. Technol. 35, 1481-1486 Koziel, J., M. Jia, and J. Pawliszyn (2000) Air sampling with porous solid-phase microextraction fibers. Anal. Chem. 72, 5178-5186 Krauss, M. and W. Wilcke (2001) Biomimetic extraction of PAHs and PCBs from soil with octadecyl-modified silica disks to predict their availability to earthworms. Environ. Sci. Technol. 35, 3931-3935 Lei, L., M. T. Suidan, A. P. Khodadoust, and H. H. Tabak (2004) Assessing the bioavailability of PAHs in field-contaminated sediment using XAD-2 assisted desorption. Environ. Sci. Technol. 38, 1786-1793 Lestremau, F., F. A. T. Andersson, V. Desauziers, and J. Fanlo (2003) Evaluation of solid-phase microextraction for time-weighted average sampling of volatile sulfur compounds at ppb concentrations. Anal. Chem. 2626-2632 Liang, X., S. Zhu, P. Chen, and L. Zhu (2010) Bioaccumulation and bioavailability of polybrominated diphynel ethers (PBDEs) in soil. Environ. Pollut. 158, 2387-2392 Linz, D. G. and D. V. Nakles (ed.) (1997) Environmentally acceptable endpoints in soil. Am. Academy of Environ. Eng., New York. Liste, H. H. and M. Alexander (2002) Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere. 46, 1011-1017 Liste, H. H., and M. Alexander (2002) Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere. 46, 1011-1017 Luthy, R. G., G. R. Aiken, M. L. Brusseau, S. D. Cunningham, P. M. Gschwend, J. J. Pignatello, M. Reinhard, S. J. Traina, W. J. Jr. Weber, and J. C. Westall (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ. Sci. Technol. 31, 3341-3347 Macleod, C. J. A. and K. T. Semple (2000) Influence of contact time on extractability and degradation of pyrene in soils. Environ. Sci. Technol. 34, 4952-4957 Macleod, C. J. A., A. W. J. Morriss, and K. T. Semple (2001) The role of microorganisms in ecological risk assessment of hydrophobic organic contaminants in soils. Adv. Appl. Microbiol. 48, 171-212 MacRae, J. D. and K. J. Hall (1998) Comparison of methods used to determine the availability of polycyclic aromatic hydrocarbons in marine sediment. Environ. Sci. Technol. 32, 3809-3815 Mahadevan, B., C. P. Marston, W. M. Dashwood, Y. Li, C. Pereira, and W. M. Baird (2005) Effect of a standardized complex mixture derived from coal tar on the metabolic activation of carcinogenic polycyclic aromatic hydrocarbons in human cells in culture. Chem. Res. Toxicol. 18, 224-231 Malekani, K., J. A. Rice, and J. S. Lin (1997) The effect of sequential removal of organic matter on the surface morphology of humin. Soil Sci. 162, 333-342 Mayer, P., W. H. J. Vaes, F. Wijnker, K. C. H. M. Legierse, R. H. Kraaij, J. Tolls, and J. L. M. Hermens (2000) Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ. Sci. Technol. 34, 5177-5183 McCarty, and P. L. (1988) “Bioengineering issues related to in situ remediation of contaminated soils and groundwater” in G. S. Omenn(ed). Environ. Biotechnol. lenum, New York. 143-163 McNally, D. L., J. R. Mihelcic, and D. R. Lueking, (1999) Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions. Chemosphere. 38, 1313-1321 Miller, M. E. and M. Alexander (1991) Kinetics of bacterial degradation of benzylamine in a montmorillonite suspension. Environ. Sci. Technol. 25, 240-245 Miller, R. M. and R. Bartha (1989) Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Appl. Environ. Microbiol. 55, 269-274 Mott, S. C., P. H. Groenevelt, and R. P. Voroney (1990) Biodegradation of a gas oil applied to aggregates of different sizes. J. Environ. Qual. 19, 257-260 Nam, K., and M. Alexander (1998) Role of nanoporosity and hydrophobicity in sequestration and bioavailability: Tests with model solids. Environ. Sci. Technol. 32, 71-74 Nam, K., and M. Alexander (2001) Relationship between biodegradation rate and percentage of a compound that becomes sequestered in soil. Soil Biol. Biochem. 33, 787-792 Napola A., M.D.R. Pizzigallo, P. Di Leo, M. Spagnuolo, and P. Ruggiero (2006) Mechanochemical approach to remove phenantherne from a contaminated soil. Chemoshpere, 65, 1583-1590 Noriyuki, I., M. Sunairi, H. Anzai, H. Morisaki, and M. Nakajima (2003) Relationships among colony morphotypes, cell-surface properties and bacterial adhesion to substrata in Rhodococcus. Colloids Surf., B. 30, 51-61 Ouyang, G., Y. Chen, and J. Pawliszyn (2005) Time-weighted average water sampling with a solid-phase microextraction device. Anal. Chem. 77, 7319-7325 Patterson, C. J., K. T. Semple, and G. I. Paton(2004)Non-exhaustive extraction techniques (NEETs) for the prediction of naphthalene mineralisation in soil. FEMS Microbiol. Lett. 241, 215-220 Pawliszyn, and J. (1997) Solid phase microextraction theory and practice. Wiley-VCH, Inc., Canada Pliskova, M., J. Vondracek, and B. Vojtesek (2005) Deregulation of cell proliferation by polycyclic aromatic hydrocarbons in human breast carcinoma MCF-7 cells reflects both genotoxic and nongenotoxic events. Toxocol. Sci. 83, 246-256 Reid, B. J., A. L. Swindell., I. J. Allen, and K. T. Semple (2005) “Predicting bioremediation endpoints based on cyclodextrin extractable fractions” In: B. C. Alleman and M. E. Kelley (Conference Chairs), In Situ and On-Site Bioremediation (2005). Proceedings of the Eighth International. In Situ and On-Site Bioremediation Symposium (Baltimore, Maryland; June 6-9,2005). ISBN 1-57477-152-3, Battelle Press: Columbus, OH., pp. F-15 Reid, B. J., J. D. Stokes, K. C. Jones, and K. T. Semple (2000a) Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ. Sci. Technol. 34, 3174-3179 Reid, B. J., K. C. Jones, and K. T. Semple (2000b) Bioavailability of persistent organic contaminants in soils and sediments-a perspective on mechanisms, consequences and assessment. Environ. Pollut. 108, 103-112 Rezek J., C. Wiesche, M. Mackova, F. Zadrail, and T. Macek (2008) The effect of ryegrass ( Lolium perenne ) on decrease of PAH content in long term contaminated soil. Chemosphere.70, 1603-1608 Ribeiro A., M.H. Neves, M.F. Almeida, A. Alves, and L. Santos (2002) Direct determination of chlorophenols in landfill leachates by solid-phase micro-extraction-gas chromatography-mass spectrometry. J. Chromatogr. A. 975, 267-274 Rodriguez-Bencomo J. J., J. E. Conde, F. Garcia-Montelongo, and J. P. Pérez-Trujillo (2003) Determination of major compounds in sweet wines by headspace solid-phase microextraction and gas chromatography. J. Chromatogr. A. 991, 13-22 Sayles, G. D., C. M. Acheson, M. J. Kupferle, Y. Shan, Q. Zhou, J. R. Meier, L. Chang, and R. Brenner (1999) Land treatment of PAH contaminated soil: performance measured by chemical and toxicity assays. Environ. Sci. Technol. 33, 4310-4317 Semple, K. T., B. J. Reid, and T. R. Fermor (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants: a review. Environ. Pollut. 112, 269-283 Semple, K. T., K. J. Doick, K. C. Jones, A. Craven, P. Burauel, and H. Harms (2004) Defining bioavailability and bioaccessibility for the risk assessment and remediation of contaminated soils and sediments. Environ. Sci. Technol. 38, 228A-231A Senatalar, A., J. A. Bergendahl, and R. W. Thompson (2004) Observation on soild phase micro extraction for MTBE analysis. Chemosphere. 57, 523-527 Skopp, J., M. D. Jawson, and J. W. Doran (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 54, 1619-1625 Sormunen, A. J., A. I. Tuikka, J. Akkanen, T. Leppanen, and J. V. K. Kukkonen (2010) Predicting the bioavailability of sediment-associated spiked compounds by using the polyoxymethylene passive sampling and Tenax extraction methods in sediments from three river basins in Europe. Arch. Environ. Contam. Toxicol. 59, 80-90 Spacie, A. and J. L. Hamelink (1995) Bioaccumulation. In: Fundamentals ofaquatic toxicology, effects, environmental fate and risk assessment, ed GM Rand, 2nd edn, Taylor and Francis Washington DC. Steinberg, S. M., J. S. Schmeltzer, and D. K. Kreamer (1996) Sorption of benzene and trichloroethylene on a desert soil: Effects of moisture and organic matter. Chemosphere. 33, 961-980 Stephen, R. H., W. S. Guy, A. K. David, and A. S. Garmon (1991) Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions. Environ. Sci. Technol. 25, 68-76 Stokes J. D., A. Wilkinson, B. J. Reid, K. C. Jones, and K. T. Semple (2005) Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-β-cyclodextrin extraction technique. Environmental Toxicology and Chemistry. 24, 1325-1330 Stokes, J. D., G. I. Paton, and K. T. Semple (2006) Behaviour and assessment of bioavailability of organic contaminants in soil: relevance for risk assessment and remediation. Soil Use Manage. 21, 475-486 Stringfellow, W. T., M. D. Aitken, (1995) Competitive metabolism of Naphthalene, Methylnaphthalene, and Fluorene by Phenanthrene-degrading Pseudomonads, Appl. Environ. Microb. 61, 357-362. Supelco (1997) SPME portable field sampler with 100μm PDMS fiber. T497174 Supelco (1998) Supelco Chromatography. 3223 Swindell, A. L. and B. J. Reid (2006) Comparison of selected non-exhaustive extraction techniques to assess PAH availability in dissimilar soils. Chemosphere. 62, 1126-1134 Tang, J., B. K. Robertson, and M. Alexander (1999) Chemical-extraction methods to estimate bioavailability of DDT, DDE, and DDD in soil. Environ. Sci. Technol. 33, 4346-4351 Tang, J., E. J. Petersen, Q. Huang, and W. J. Jr. Weber (2007) Development of engineered natural organic sorbents for environmental applications: 3. Reducing PAH mobility and bioavailability in contaminated soil and sediment systems. Environ. Sci. Technol. 41, 2901-2907 Tao, Y., S. Zhang, Z. Wang, and P. Christier (2008) Predicting bioavailability of PAHs in soils to wheat roots with triolein-embedded cellulose acetate membranes and comparison with chemical extraction. J. Agric. Food Chem. 56, 10817-10823 Ter laak, T. L., A. Barendregt, and J. L. M. Hermens (2006) Freely dissolved pore water concentrations and sorption coefficients of PAHs in spiked, aged, and field-contaminated soils. Environ. Sci. Technol. 40, 2184-2190 Trimble, T. A., J. You, and M. J. Lydy (2008) Bioavailability of PCBs from field-collected sediments: Application of Tenax extraction and matrix-SPME techniques. Chemosphere. 71, 337-344 Tsai, S. W. and T. A. Chang (2002) Time-weighted average sampling of airborne n-valeraldehyde by a solid-phase microextration device. J. Chromatogr. A. 191-198 Urrestarazu Ramos, E., S. N. Meijer, W. H. J. Vaes, H. J. M. Verhaar, and J. L. M. Hermens (1998) Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals. Environ. Sci. Technol. 32, 3430-3435 Van Der Heijden S. A., and M. T. O. Jonker (2009) PAH Bioavailability in Field Sediments: Comparing Different Methods for Predicting in Situ Bioaccumulation. Environ. Sci. Technol. 43, 3757-3763 Van der Wal, L., C. A. M. V. Gestel, and J. L. M. Hermens (2004a) Solid phase microextraction as a tool to predict internal concentrations of soil contaminants in terrestrial organisms after exposure to a laboratory standard soil. Chemosphere. 54, 561-568 Van der Wal, L., T. Jager, R. H. L. J. Fleuren, A. Barendregt, T. L. Sinnige, and C. A. M. Hermens (2004b) Solid-phase micro extraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environ. Sci. Technol. 38, 4842-4848 Van Leeuwen, C. J. and J. L. M. Hermens (1995) Terrestrial toxicity. In risk assessment of chemicals, an Introduction. Kluwer Academic Dordrecht Netherlands. 211-216 Volkering, F., J. J. Quist, A. F. M. van Velsen, P. H. G. Thomassen, and M. Olijve (1998) A rapid method for predicting the residual concentration after biological treatment of oil polluted soil. In: Contaminated Soil. Thomas Telford, London. 251-259 Wang, S. Y. and C. Vipulanandan (2001) Biodegradation of naphthalene contaminated soils in slurry bioreactors. J. Environ. Eng. ASCE. 127, 748-754 White, J. C. and J. J. Pignatello (1999) Influence of bisolute competition on the desorption kinetics of polycyclic aromatic hydrocarbons in soil. Environ. Sci. Technol. 33, 4292-4298 White, J. C., J. W. Kelsey, P. B. Hatzinger, and M. Alexander (1997) Factors affecting sequestration and bioavailability of phenanthrene in soils. Environ. Toxicol. Chem. 16, 2040-2045 White, J. C., M. Hunter, J. J. Pignatello, and M. Alexander (1999a) Increase in bioavailability of aged phenanthrene in soils by competitive displacement with pyrene. Environ. Toxicol. Chem. 18, 1728-1732 Wilcockson, J. B. and F. A. P. C. Gobas (2001) Thin-film solid-phase extraction to measure fugacities of organic chemicals with low volatility in biological samples. Environ. Sci. Technol. 35, 1425-1431 Wild, S. R. and K. C. Jones (1995) Polynuclear aromatic hydrocarbons in the United-Kingdom environment-a preliminary source inventory and budget. Environ.Pollut. 88, 91-108 Xing, B. and J. J. Pignatello (1997) Dual-mode sorption of low-polarity compounds in glassy poly (vinyl chloride) and soil organic matter. Environ. Sci. Technol. 31, 792-799 Yang, X., F. Wang, C. Gu, and X. Jiang (2010) Tenax TA extraction to assess the bioavailability of DDTs in cotton field soils. J. Hazard. Mater. 179, 676-683 Yang, Y., and J. Zeyer (2003) Specific detection of Dehalococcoides species by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide Probes. Appl. Environ. Microbiol. 69, 2879-2883 You, J., P. F. Landrum, and M. J. Lydy (2006) Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ. Sci. Technol. 40, 6348-6353 You, J., P. F. Landrum, T. A. Trimble, and M. J. Lydy (2007) Availability of polychlorinated biphenyls in field-contaminated sediment. Environ. Toxicol. Chem. 26, 1940-1948 Young, T. M., and W. J. Weber (1995) A distributed reactivity model for sorption by soils and sediments. 3. Effects of diagenetic processes on sorption energetics. Environ. Sci. Technol. 29, 92-97
摘要: 
本研究以PAHs中的二環分子—萘( naphthalene, Nap )、三環分子—菲( phenanthrene, PA )以及四環分子—芘( pyrene, Pyr )為目標污染物,以不同特性模擬土壤在污染物濃度不同、菌群不同、污染齡不同、有機質含量不同以及污染物共存等條件下,探討污染物之生物有效性,並使用固相微萃取技術(Solid phase micro-extraction, SPME)評估污染物於不同特性下的生物有效性,再與實際生物降解量比較,觀察其相關性,期望能利用SPME成功的評估出被PAHs污染土壤的生物有效性。
由生物降解批次實驗發現,當污染物濃度提高時,植種菌與原生菌分別有56 ~ 319小時與0 ~ 610小時不等的遲滯期,其中植種菌之遲滯期較原生菌短,其原因是植種菌長期以PAHs馴養之關係,而本實驗設計之所有濃度皆不會對微生物產生毒性抑制的現象;在污染齡以及有機質含量增加的情況下,降解量與降解速率分別有30 ~ 94% 與8 ~ 100%不等的減少,這結果說明了污染物於土壤中會有貯滯的作用,且污染物之Koc值越高與土壤產生之吸附作用力越強,進而影響其降解速率;就污染物共存實驗中,微生物會優先降解二環的Nap,再降解三環的PA,最後才降解四環的Pyr,而Nap與PA共存時,當Nap濃度大於PA濃度時,使Nap之生物降解速率增加27%,但當萘濃度小於菲濃度時,則使生物降解速率減少了13%。但在Nap、PA與Pyr共存時,PA的生物降解速率減緩了90%,這顯示在好氧情況下,Pyr會延長PA之降解時間。
固相微萃取技術於兩種菌群、五組污染物組合、濃度效應以及三種土壤特性下,觀察其生物有效性評估值與實際微生物降解量的相關性,結果顯示固相微萃取技術與實際生物降解量整體之相關性並不佳 (R2僅為0.19) ;斜率與截距分別為0.54與0.52,表示SPME技術大多有高估生物有效性的現象。進一步將各項條件分開探討,發現固相微萃取技術在評估高環數芳香族化合物 (Pyr組) 、污染物共存 (Nap+PA組、Nap+PA+Pyr組) 、齡久土壤及土壤有機質含量較高等較為極端之條件,易使固相微萃取技術的評估值出現偏差的現象,但在評估三環以下污染物 (Nap組以及PA組) 以及污染物濃度較高的條件下有較佳的可靠性。

In this study, three polycyclic aromatic hydrocarbons (PAHs) were used as the target contaminants, ie., two ring molecules-Naphthalene (Nap), three-ring molecule-Phenanthrene (PA), and tetracycline molecule-Pyrene (Pyr). Bioavailability tests were conducted at different environmental conditions, such as the effect of different soil properties, the effect of multi-contaminant. Solid phase micro-extraction (SPME) method was used to assess the bioavailability of PAHs under different conditions.
The result of batch degradation tests indicated that the lag period for seeded and indigenous microorganisms was 56 to 319 and 0 to 610 hours, respectively. The amount of degraded PAH and degradation rate decreased for soil with higher SOM content and longer aging period. This result showed contaminants had sequestration in the soil, and soil adsorption capacity depended on Koc value. It also affected the degradation rate. In the multi-contaminant study, Nap was preferentially biodegraded following by PA and Pyr. If soils were contaminated by both Nap and PA, the removal efficiency of Nap increased 27%, when Nap concentration was higher than PA concentration. By contrast, it decreased 13% when Nap concentration was less. In the case that soil were contaminated by tripartite Nap, PA, and Pyr, the removal efficiency of PA increased 90%. This result showed the Pyr could extending the PA of the degradation in the aerobic environment.
The correlation between SPME extractable contaminants and biodegradable contaminants gave a result that SPME overestimated the actual amount of biodegradation. For the all tested soil samples, the correlation between the amounts being degraded and the amounts estimated by SPME gave an R2 of 0.19, slope of 0.54, and intercept of 0.52. In addition, SPME could not properly estimate the bioavailability of PAHs in soils containing higher MW PAHs, at multi-contaminant situation, longer aging period, and higher SOM.
URI: http://hdl.handle.net/11455/5034
其他識別: U0005-2207201120281400
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.