Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5036
標題: 奈米乳化液於地下水層中傳輸研究
Transport Modeling of Nano-emulsion in the subsurface
作者: 陳姿文
Chen, Tzu-Wen
關鍵字: Nano-emulsion;奈米乳化液;electron donor;Column transfer;fluorescent;One-Dimensional Transport Model;電子供給者;管柱傳輸;螢光;一維溶質傳輸模式
出版社: 環境工程學系所
引用: 1. Ahmad, M., Xie, T., McCulloch, M., Abreo, G., & Runge, M. (2001) . Real-time three-dimensional dobutamine stress echocardiography in assessment stress echocardiography in assessment of ischemia: Comparison with two-dimensional dobutamine stress echocardiography. Journal of the American College of Cardiology, 37 (5) , 1303. 2. Aulenta, F., Pera, A., Rossetti, S., Petrangeli Papini, M., & Majone, M. (2007) . Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Research, 41 (1) , 27-38. 3. Barber, N. L. (2009) . In Geological Survey (US) (Ed.) , Summary of estimated water use in the united states in 2005 US Dept. of the Interior, US Geological Survey. 4. Bear, J. (1988) . Dynamics of fluids in porous media Dover publications. 5. Bennett, P., Gandhi, D., Warner, S., & Bussey, J. (2007) . In situ reductive dechlorination of chlorinated ethenes in high nitrate groundwater. Journal of Hazardous Materials, 149 (3) , 568-573. 6. Berge, N. D., & Ramsburg, C. A. (2009) . Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environmental Science & Technology, 43 (13) , 5060-5066. 7. Bhatt, P., & SURESH, K. (2007) . Biodegradation of chlorinated compounds: A review. Critical Reviews in Environmental Science and Technology, 37 (2) , 165-198. 8. Borden, R. C. (2007) . Effective distribution of emulsified edible oil for enhanced anaerobic bioremediation. Journal of Contaminant Hydrology, 94 (1-2) , 1-12. 9. Borden, R. C. (2010) . Edible oil barriers for treatment of chlorinated solvent and perchlorate-contaminated groundwaterDTIC Document. 10. Borden, R. C., & Kao, C. M. (1992) . Evaluation of groundwater extraction for remediation of petroleum-contaminated aquifers. Water Environment Research, , 28-36. 11. Brar, S. K., Verma, M., Surampalli, R. Y., Misra, K., Tyagi, R. D., Meunier, N., et al. (2006) . Bioremediation of hazardous Wastes—A review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10 (2) , 59-72. 12. Chang, C. W. (2006) . One-dimensional transport model and pilot study for the advection, dispersion and adsorption of trichloroethylene in aquifers. National Cheng Kung University) . 13. Chang, M., Wu, S., & Chen, C. (1997) . Diffusion of volatile organic compounds in pressed humic acid disks. Environmental Science & Technology, 31 (8) , 2307-2312. 14. Chang, M. L., Wu, S. C., Chen, P. J., & Cheng, S. C. (2003) . Infrared investigation of the sequestration of toluene vapor on clay minerals. Environmental Toxicology and Chemistry, 22 (9) , 1956-1962. 15. Chuah, A. M., Kuroiwa, T., Kobayashi, I., & Nakajima, M. (2009) . Effect of chitosan on the stability and properties of modified lecithin stabilized oil-in-water monodisperse emulsion prepared by microchannel emulsification. Food Hydrocolloids, 23 (3) , 600-610. 16. Cortis, A., & Ghezzehei, T. A. (2007) . On the transport of emulsions in porous media. Journal of Colloid and Interface Science, 313 (1) , 1-4. 17. Coulibaly, K. M. (2004) . Permeability reduction and emulsified soybean oil distribution in aquifer sediments: Experimental and modeling results. (Philosophy, North Carolina State University) . 18. Coulibaly, K. M., & Borden, R. C. (2004) . Impact of edible oil injection on the permeability of aquifer sands. Journal of Contaminant Hydrology, 71 (1-4) , 219-237. 19. Coulibaly, K. M., Long, C. M., & Borden, R. C. (2006) . Transport of edible oil emulsions in clayey sands: One-dimensional column results and model development. Journal of Hydrologic Engineering, 11 (3) , 230-237. 20. Culver, T. B., Hallisey, S. P., Sahoo, D., Deitsch, J. J., & Smith, J. A. (1997) . Modeling the desorption of organic contaminants from long-term contaminated soil using distributed mass transfer rates. Environmental Science & Technology, 31 (6) , 1581-1588. 21. Domenico, P. A., & Schwartz, F. W. (1998) . Physical and chemical hydrogeology Wiley New York. 22. Duhamel, M. A. (2006) . Community structure and dynamics of anaerobic chlorinated ethene-degrading enrichment cultures. University of Toronto) . 23. Elliott, D. W., & Zhang, W. X. (2001) . Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 35 (24) , 4922-4926. 24. Fahrig, R., Madle, S., & Baumann, H. (1995) . Genetic toxicology of trichloroethylene (TCE) . Mutation Research.Reviews in Genetic Toxicology, 340 (1) , 1-36. 25. Fennell, D. E., & Gossett, J. M. (1998) . Modeling the production of and competition for hydrogen in a dechlorinating culture. Environmental Science & Technology, 32 (16) , 2450-2460. 26. Ferrari, B., & Moreno, R. (1997) . Electrophoretic deposition of aqueous alumina slips. Journal of the European Ceramic Society, 17 (4) , 549-556. 27. Fetter, C. W. (1988) . Applied hydrogeology Merrill Publishing Company. 28. Freeze, R. A., & Cherry, J. A. (1977) . Groundwater Prentice-Hall. 29. Gierke, J. S., Hutzler, N. J., & Crittenden, J. C. (1990) . Modeling the movement of volatile organic chemicals in columns of unsaturated soil. Water Resour.Res, 26 (7) , 1529-1547. 30. Griffin, W. C. (1949) . Classification of surface active agents by HLB. J.Soc.Cosmet.Chem, 1 (311) , 97. 31. Holmberg, K., & Jonsson, B. (2003) . Surfactants and polymers in aqueous solution Wiley. 32. Hopkins, G. D., Semprini, L., & McCarty, P. L. (1993) . Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms. Applied and Environmental Microbiology, 59 (7) , 2277-2285. 33. Jinghua, S., Fei, L., Honghan, C., & Ye, L. (2007) . Degradation of tetrachloroethene by several co-metabolism substrates in groundwater. :, 81 (005) , 827-832. 34. Kao, C. M., Huang, W. Y., Chang, L. J., Chen, T. Y., Chien, H. Y., & Hou, F. (2006) . Application of monitored natural attenuation to remediate a petroleum-hydrocarbon spill site. Water Science and Technology, 53 (2) , 321-328. 35. Kong, L., Beattie, J. K., & Hunter, R. J. (2001) . Electroacoustic study of concentrated oil-in-water emulsions. Journal of Colloid and Interface Science, 238 (1) , 70-79. 36. Kunieda, H., & Shinoda, K. (1980) . Solution behavior and hydrophile-lipophile balance temperature in the aerosol OT-isooctane-brine system: Correlation between microemulsions and ultralow interfacial tensions. Journal of Colloid and Interface Science, 75 (2) , 601-606. 37. Kuo, M. C., Liang, K. F., Han, Y. L., & Fan, K. C. (2004) . Pilot studies for in-situ cometabolismo of trichloroethylene using toluene-vapor as the primary substrate. Water Research, 38 (19) , 4125-4134. 38. Kuo, M. T., Chen, C. M., Lin, C. H., Fang, H. C., & Lee, C. H. (2000) . Surveys of volatile organic compounds in soil and groundwater at industrial sites in taiwan. Bulletin of Environmental Contamination and Toxicology, 65 (5) , 654-659. 39. Lee, I. S., Bae, J. H., & McCarty, P. L. (2007) . Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE. Journal of Contaminant Hydrology, 94 (1-2) , 76-85. 40. Lee, M. D., Lieberman, M. T., Beckwith, W., Borden, R. C., Haas, P., Becvar, E. S., et al. (2005) . Vegetable oil pilots to enhance DNAPL sequestration and reductive dechlorination. Proceedings of Remediation of Chlorinated and Recalcitrant Compounds–8th Internat. Conf., Baltimore, MD, 41. Lee, S. (2007) . Enhanced dissolution of TCE in NAPL by TCE-degrading bacteria in wetland soils. Journal of Hazardous Materials, 145 (1-2) , 17-22. 42. Leeson, A., Beevar, E., Henry, B., Fortenberry, J., & Coyle, C. (2004) . Principles and practices of enhanced anaerobic bioremediation of chlorinated solvents (WATER POLLUTION AND CONTROL BIOCHEMISRTY ORGANIC CHEMISTRY No. ADA511850) DTIC Document. 43. Little, C. D., Palumbo, A. V., Herbes, S. E., Lidstrom, M. E., Tyndall, R. L., & Gilmer, P. J. (1988) . Trichloroethylene biodegradation by a methane-oxidizing bacterium. Applied and Environmental Microbiology, 54 (4) , 951. 44. Liu, J., Wang, L. Q., Samuels, W. D., & Exarhos, G. J. (1997) . Aggregation and dispersion of colloidal suspensions by inorganic surfactants: Effect of chemical speciation and molecular conformation. The Journal of Physical Chemistry B, 101 (41) , 8264-8269. 45. Long, C. M., & Borden, R. C. (2006) . Enhanced reductive dechlorination in columns treated with edible oil emulsion. Journal of Contaminant Hydrology, 87 (1-2) , 54-72. 46. Maymo-Gatell, X., Gossett, J. M., & Zinder, S. H. (1997) . In Alleman B. C., Leeson A. (Eds.) , Ethene production from halogenated aliphatics. Battelle Press, Columbus, OH. 47. McBain, J. W. (1913) . Mobility of highly-charged micelles. Trans.Faraday Soc, 9, 99. 48. McDonald, M. G., & Harbaugh, A. W. (1988) . A modular three-dimensional finite-difference ground-water flow model. United States: Department of the Interior, Reston, VA (US) . 49. Metzler, R., & Klafter, J. (2000) . The random walk''s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports, 339 (1) , 1-77. 50. Miller, R. R. (1996) . Air sparging No. TO-96-04) Ground-Water Remediation Technologies Analysis Center. 51. Monosson, E. (2008) . TCE contamination of groundwater., 2011, from http://www.trunity.net/env101template1/articles/view/156394/ 52. Ng, C. O., & Mei, C. C. (1996) . Aggregate diffusion model applied to soil vapor extraction in unidirectional and radial flows. Water Resources Research, 32 (5) , 1289-1297. 53. Nyer, E. K., & Palmer, P. L. (1997) . In situ treatment technology. Environmental Technology, 7 (1) , 4. 54. Orafidiya, L. O., & Oladimeji, F. A. (2002) . Determination of the required HLB values of some essential oils. International Journal of Pharmaceutics, 237 (1-2) , 241-249. 55. Parker, J. C., & Van Genuchten, M. T. (1984) . Determining transport parameters from laboratory and field tracer experiments. Bull, 84 (3) 56. Peterson, C., & Jones, N. (1999) . Aerobic degradation of trichloroethyleneBrigham Young University. 57. Roberts, P. V., Semprini, L., Hopkins, G. D., Gibic-Galic, D., & McCarty, P. L. (1989) . In situ aquifer restoration of chlorinated aliphatics by methanotrophic bacteria. 58. Roote, D. S. (1997) . In situ flushing Ground-Water Remediation Technologies Analysis Center. 59. Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., et al. (2007) . Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24 (1) , 45-57. 60. Scheidegger, A. E. (1954) . Statistical hydrodynamics in porous media. Journal of Applied Physics, 25 (8) , 994-1001. 61. Semprini, L., Roberts, P. V., Hopkins, G. D., & McCarty, P. L. (1990) . Field evaluation of in-situ biodegradation of chlorinated ethenes. part 2, results of biostimulation and biotransformation experiments. Ground Water, 28 (5) , 715-727. 62. Shinoda, K., & Kunieda, H. (1985) . Phase properties of emulsions: PIT and HLB Marcel Dekker: New York. 63. Siegrist, R. L., Urynowicz, M. A., West, O. R., Crimi, M. L., & Lowe, K. S. (2001) . Principles and practices of in situ chemical oxidation using permanganate Battelle Press Columbus, OH. 64. Simmonds, A. C. (2007) . Dechlorination rates in KB-1, a commercial trichloroethylene-degrading bacterial culture. (Master, University of Toronto) . 65. Singh, B. P., Menchavez, R., Takai, C., Fuji, M., & Takahashi, M. (2005) . Stability of dispersions of colloidal alumina particles in aqueous suspensions. Journal of Colloid and Interface Science, 291 (1) , 181-186. 66. Sujatha, T. V., & Hegde, M. J. (1998) . C-mitotic effects of trichloroethylene (TCE) on bone marrow cells of mice. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 413 (2) , 151-158. 67. Suthersan, S. S. (1997) . Remediation engineering: Design concepts CRC. 68. Tadros, T., Izquierdo, P., Esquena, J., & Solans, C. (2004) . Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 108, 303-318. 69. Taylor, P. (1998) . Ostwald ripening in emulsions. Advances in Colloid and Interface Science, 75 (2) , 107-163. 70. Todd, A. S. (1959) . The histological localisation of fibrinolysin activator. The Journal of Pathology and Bacteriology, 78 (1) , 281-283. 71. Tsai, T. T., Kao, C. M., Yeh, T. Y., & Lee, M. S. (2008) . Chemical oxidation of chlorinated solvents in contaminated groundwater: Review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12, 116. 72. Tufenkji, N., & Elimelech, M. (2004) . Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science & Technology, 38 (2) , 529-536. 73. USEPA. (2004) . Treatment technologies for site cleanup: Annual status report No. EPA-542-R-03) USEPA. 74. Wang, M. S., Wu, S. C., & Kuo, C. W. (2007) . Modeling the rebounding of contaminant concentrations in subsurface gaseous phase during intermittent soil vapor extraction operation. Journal of Environmental Engineering and Management, 17 (1) , 11-19. 75. Yang, G. C. C., & Liu, C. Y. (2001) . Remediation of TCE contaminated soils by in situ EK-fenton process. Journal of Hazardous Materials, 85 (3) , 317-331. 76. Yeh, M. K. (2007) . The study of using continuous time random walk model in contaminant transport modeling. (Master, National Cheng Kung University) . 77. Zhang, Q., Thompson, M. S., Carmichael-Baranauskas, A. Y., Caba, B. L., Zalich, M. A., Lin, Y. N., et al. (2007) . Aqueous dispersions of magnetite nanoparticles complexed with copolyether dispersants: Experiments and theory. Langmuir, 23 (13) , 6927-6936. 78. Zheng, C. (2009) . Recent developments and future directions for MT3DMS and related transport codes. Ground Water, 47 (5) , 620-625. 79. 土壤及第下水整治網. (2009) . http://sgw.epa.gov.tw/public/index.asp 80. 官知嫻、李季眉、盧至人 (1998) .甲苯分解菌共代謝三氯乙烯。 第二十三屆廢水處理技術研討會論文集。台中市。 81. 張書奇、游雨涵、陳姿文、林耀東 (2009) . 植物油奈米乳化液在地下水層中傳輸現象探討. 環境工程年會, 雲林. 82. 張書奇、陳姿文、游雨涵、林耀東 (2010) . 奈米乳化液在管柱傳輸實驗中之螢光定量方法研究. 第七屆環境保護與奈米科技學術研討會, 台北. 83. 曹桓光、連大偉 (2001) . 淺談微乳液. 物理雙月刊, 23, 488-493. 84. 李育嘉 (2002) . 漫談布朗運動. 數學傳播季刊, 9 (3) 85. 林上傑 (2009) . 奈米乳化液應用於新式永續性工程用液之研究. 中興大學 86. 歐靜枝 (1989) . 乳化溶化技術實務 復漢出版社. 87. 盧至人 (1998) . 地下水的污染整治 國立編譯館. 88. 蔡文田、邱伸彥 (1992) . 蒸氣脫脂用含氯溶劑之特性、管制和污染預防. 工業污染防治, 145-160. 89. 行政院勞工委員會. (2008) . 物質安全資料表., http://www.iosh.gov.tw/Publish.aspx?cnid=25&P=714 90. 陳家洵. (2010) . 地下水動力學., http://taiwanpedia.culture.tw/web/content?ID=3421 91. 陳福勝、陳卓然、林士誠 (2001) . 土壤及地下水污染處理總論. 中華技術, 49 92. 黃紅慈 (2001) . 添加慢釋出生物電子供給者處理 PCE 污染之地下水. 國立中興大學
摘要: 
氯化有機溶劑應用於工業製程中,常因處理不當導致地下水層受到污染。於整治地下水中低濃度之氯化有機物污染時,以化學或物理方式整治其成本較高,而在生物處理中以厭氧處理較適合用於此類地下水污染之整治。但厭氧微生物常受限於缺乏電子供給者來進行還原脫氯反應使降解過程未能持續,故以植物油乳化液作為電子供給者來源;但現有國際間商品化之乳化液 (500nm以上) 在地下水傳輸過程中容易因平均油顆粒粒徑過大導致阻塞與傳輸距離較短。本研究以粒徑小於100nm之螢光奈米乳化液進行單一砂粒徑及混合砂粒徑之傳輸實驗,發現乳化液粒徑於傳輸後有改變之趨勢且有部份乳化液在末期有破乳化之情況,而藉由螢光影像之拍攝確定管柱中乳化液流布之情形且發現濃度分布曲線並不平穩。而本研究以一維溶質傳輸模式針對乳化液濃度貫流曲線進行模擬,可得R2於0.824至0.943,其模擬結果較文獻中以 MT3D模擬 500nm以上乳化液傳結果更佳。此外,經由掃描式電子顯微鏡觀察玻璃砂粒徑表面結果顯示有乳化液成份物質塗佈於表面上,此結果可提供現有之傳輸模擬模式能針對乳化液系統加以修正,並建立更加完善之乳化液傳輸模式。

Chlorinated organic compounds are often used in industrial processes. If improperly handled, it will lead to contamination of subsurface environment. Chemical or physical remediation is not suitable for medium to low level contaminations of chlorinated solvents in the subsurface due to lower cost effectiveness. Thus, biological treatment is imperative in medium to low level contamination sites/ Anaerobic biological treatment is more suitable than aerobic one because the former can fully mineralize them by microbiological electron transfer. However, lack of enough electron donors often hinders anaerobic bioremediation. Therefore, researchers are developing all different kinds of electron donors. Vegetable oil nanoemulsion in one of them that can slowly release hydrogen in the subsurface to enhance reductive dechlorination. For this reason that some scholars take vegetable oil emulsion supply electron donor. On the international market, there is a commercially available product, Emulsified Oil Substrate, which has an average size bigger than 500 nm. This large size can cause clogging of the pores in groundwater and decrease it hydraulic conductivity. In our study, we developed a fluorescent soy-bean oil nanoemulsion with average size less than 100 nm. We successfully monitored the concentration profiles of this nanoemulsion in a simulated glass-bead packed column and simulated the eluted concentrations using columns packed with uniform and non-uniform glass beads. A traditional one-dimensional solute transport model was employed to simulate the emulsion concentration curve and the results are satisfactory with R2 ranging from 0.824 to 0.943. The micrographs generated form scanning electron microscope observation on clean glass beads and glass beads used in transport experiments showed that a thick layer of nanoemulsion exist on the surface of the glass beads. Thus, the sorption and desorption processes are much more complicated than what have been reported in the literature.
URI: http://hdl.handle.net/11455/5036
其他識別: U0005-2208201109042800
Appears in Collections:環境工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.