Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5038
DC FieldValueLanguage
dc.contributor陳伯中zh_TW
dc.contributor盧至人zh_TW
dc.contributor賴雪端zh_TW
dc.contributor.advisor李季眉zh_TW
dc.contributor.author陳伯壎zh_TW
dc.contributor.authorPo-, Hsuan-Chenen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:33:52Z-
dc.date.available2014-06-06T06:33:52Z-
dc.identifierU0005-2208201111134500zh_TW
dc.identifier.citation參考文獻 王漢泉,1990,德基水庫水質優養等級之研究,師大生物學報,第二十五期,41-55。 王瑋龍、王祈麟、林敬舒、陳伯中,2002,白沙湖藻類之調查,嘉義大學學報73:75─130。 林志麟、袁如馨,2009,藻類特性及前氧化劑對藻類混沉及過濾移除之影響,中華民國自來水協會會刊,第28卷,第2期,16-26。 邱莉婷,2010,淨水程序中快濾池去除藻類效能之研究,國立中興大學環境工程學系碩士論文。 洪慧鈞,2002,水庫優養化評估指標與優養化水體三鹵甲烷生成潛勢之探討,國立中興大學環境工程學系碩士論文。 曾四恭、劉志仁,1997,優養化水源消毒副產物之研究,自來水會刊第十六卷第三期,35-46。 曾四恭、張天益,1991,淨水處理程序中影響THMs形成因素之探討,中國環境工程學刊第一卷第三期,29-36。 高肇藩,1987,給水工程(衛生工程,自來水篇),大專用書。 陳伯中,1992,台灣中部河川之水質評估及生物指標(藻類),行政院環保署環境檢驗所。 陳建良,1998,:雙層濾料提高砂快濾池處理性能之研究淡江大學水資源及環境工程學系碩士論文。 黃文鑑,1997,混凝,吸附對溶解性有機物去除及受預氯影響之研究,國立成功大學環境工程研究所博士論文。 經濟部水利署,2009,『提升傳統淨水程序之處理效能與水質穩定性研究:異常原水水質之應變與操作技術提(1/4)』 經濟部水利署,2010,『提升傳統淨水程序之處理效能與水質穩定性研究:異常原水水質之應變與操作技術提(2/4)』 廖仲洲、吳美慧、姚寶蓮、楊詩思、黃永富、杭子樵、蘇金龍,2008,板新給水廠白濁水期間淨水處理之最佳家藥條件探討,中華民國自來水協會會刊,第27卷,第4期,24-32。 蔡桂郎,1985,自來水工程規劃,國彰出版社。 歐陽嶠暉,2008,下水道工程學;第五板,長松文化出版。 Bold, H.C., Wynne, M.J., 1978, Introduction to the algae—Structure and reproduction: Englewood Cliffs, p. 706, N.J., Prentice-Hall, Inc. Bernhardt, H., Clasen, J., 1991, Flocculation of Micro- Organisms. J. Water Supply Res. T., 40 (2), pp. 76–87. Bernhardt, H., 1984, Treatment Disturbances with Water out of Eutrophic Reservoirs as a Consequence of Extensive Algal Development. Water Supply, 2, SS4-7–SS4-15. Collingwood, R.W., 1979, The Effect of Algal Growth on the Quality of Treated Water. In James, A. and Evison, L. (eds). Biological Indicators of Water Quality, pp. 262–283. J. Wiley, Chichester. Drikas, M., Chow, C.W.K., House, J., Burch, M.D., 2001 ,Using coagulation, flocculation and settling to remove toxic cyanobacteria., J. Am. Water Works Assoc., 93 (2), pp. 100–111. Edzwald, J.K.,Wingler, B.J., 1990, Chemical and physical aspects of dissolved air-flotation for the removal of algae.” Aqua, 39, pp. 24–35. Greene, L.A. and Hayes, C.R., 1981, The Impact of Eutrophication on Water Treatment and Supplies in the Anglian Water Authority. Water Environ. J., 35, pp. 421–436. Henderson,R.,Chips,M.,Cornwell,N.,Hitchins,P.,Holden,B.,Hurley,S., Parsons,S.A.,Wetherill,A.,Jeffeson,B., 2008, Experience of algae in UK water:a treatment perspective, Water Environ. J., 22, pp. 184-192 . Hutson, R.A, Leadbeater, B.S.C. and Sedgewick, R.W., 1987, Algal Interference with Water Treatment Processes. Phycological Res., 5, pp. 265–299. Henderson,R.,Parsons,S.A.,Jefferson,B., 2008, The impact of algal properties and pre-oxidation on solid–liquid separation of algae”,Water Res., 42, pp. 1827-1845 . Jiang, J., Graham, N.J.D., 1998, Preliminary evaluation of the performance of new pre-polymerised inorganic coagulants for lowland surface water treatment., Water Sci. Tec., 37 (2), pp. 121–128 . Knappe, D.R.U., Belk, C., Briley, D.S., Gandy, S.R., Rastogi, N., Rike, A.H., Glasgow, H., Hannon, E., Frazier, W.D., Kohl, P., Pugsley, S., 2004, Algae Detection and Removal Strategies for Drinking Water Treatment Plants. J. Am. Water Works Assoc.. Kwon,B., Park,N., Cho,J., 2005, Effect of algae on fouling and efficiency of UF membranes, Desalination ,179 ,pp.203-214. Laura,B.,Paolo,G., Algae:anatomy,biochemistry,and biotechnology, CRC press,pp.15-23(2006). Konno,H., 1993, Settling and coagulation of slender type diatoms, Water Sci. Tec., 27(11), pp.231-240. Mouchet ,P., Bonnzh_TW
dc.identifier.urihttp://hdl.handle.net/11455/5038-
dc.description.abstract台灣雖為一多雨的國家,但是由於地理環境與氣候條件的限制,使得可利用的水資源相當缺乏,因此政府廣建水庫以解決水源不足的問題。隨著社會的快速發展,人類的活動造成了河川湖泊的污染,而產生水體優養化的情形,當含有大量藻類的原水進入淨水程序後,會導致淨水效果下降,進而影響供水品質。 鯉魚潭淨水廠在2008年11月至12月與2009年03月發生藻類繁生,造成快濾池阻塞的嚴重問題,使得淨水廠快濾池濾程大幅縮減,為探討藻類阻塞濾床的問題,在鯉魚潭淨水廠二期淨水程序中設置了一個與實廠相近的快濾池模廠,可以模擬實廠實際操作情形,另外設置一組小型的快濾池模組,可探討高濃度含藻進流水對於濾床之影響。 水庫採樣結果,2010年度採樣結果10月份為藻類生長之高峰期,其中以針桿藻為主要優勢藻種,佔總藻類數量約90%,隨著季節的變化,藻類的種類與數量有明顯的改變,鯉魚潭水庫水質穩定,若無人為的污染,發生藻華與嚴重優養化之可能較低。淨水廠原水中藻類數量之多寡,與水庫水位與取水口之選擇有關。 模廠實驗結果,進入模廠的藻種與其所佔之比例大致上與水庫採樣結果類似,五次試程濁度去除效率皆維持80%以上,提升石英砂粒徑可有效減緩水頭損失之累積,而降低濾層厚度會使濁度去除率下降,有貫穿濾床的疑慮。試程在使用45 cm厚之濾層且提升石英砂粒徑之條件下操作,濁度去除率已經接近廠內操作限值,若再降低濾層恐有雜質貫穿的情形。 藻類分離純化結果,多為綠藻與藍綠菌,矽藻由於生長緩慢,因此藉由抹碟方式在一般培養條件下難以純化,分離結果得到四種較純的藻類分別為小球藻,柵藻,小環藻與顫藻。 模組實驗的結果,小球藻平均大小小於10 μm,因此容易貫穿濾層,水頭損失累積較少,小環藻有累積於表層與濾材交界面的情形,其細胞大小介於30至50 μm,顫藻的細胞大小大於200 μm以上,所以表層攔阻的情形明顯,且擁有最大的水頭損失累積。zh_TW
dc.description.abstractAlthough the average rainfall in Taiwan is higher than lots of country, water resources in Taiwan are still significantly insufficient because of the landform and climate. To solve this problem, our government built reservoirs to supply sufficient water resource. Human activity caused serious eutrophication in our reservoirs and lots of algae growth rapidly in short-term, Algae were impacted the water treatment processes and reduced the quality of drinking water. Recently a large amount of algae has been found at specific periods (2008.11~12、2009.03)was set up in Li Yu Tan reservoir. Serious algae bloom accompanied rapid sand filter of water supply plant has been clogged. So water company has to raise the backwash frequency to assured the quality of effluent in water treatment processes. In this study, two rapid sand filter modules to simulate different operation conditions were constructed. The large module in Li Yu Tan water supply plant in order to simulate the operation of filtration processes. The small module was set up in laboratory and used to simulate the situation when influent contains large number of algae. In this investigation (2010.04~2011.04),The maximum concentration of algae was observed in October. The diatom was the predominant species in the reservoir. In different season, algae species change significantly with weather and temperature. In large rapid sand filter module, experiments were conducted under five operating conditions. The average removal efficiency of turbidity was higher than 80% in each case. Raising media diameter can reduce the head lost in the operational term. Other experiments determined that decreasing packed depth may reduce the turbidity removal rate. Isolation of predominant species in the reservoir is difficult because diatom growth slower than other green algae. In this study, four kind of algae were isolated. There were Cycotella sp.、Chlorella sp.、Oscillatoria sp. and Scenedesmus sp.. In small rapid sand filter module, The Oscillatoria sp. formed serious clogging in surface of filters and accumulated highest head lost about 53 cm in 8 hr. The Chlorella sp. accumulated lowest head lost about 40 cm in 8 hr and it is most easiest to breakthrough the filters into filtrate.zh_TW
dc.description.tableofcontents目錄........................................ I 圖目錄...................................... III 表目錄...................................... VI 摘要........................................ VII Abstract ................................... VIII 第一章前言.................................. 1 1.1 研究緣起................................ 2 1.2研究目的................................. 2 第二章 文獻回顧............................. 3 2.1鯉魚潭水庫概況簡介....................... 3 2.2鯉魚潭淨水廠概況簡介..................... 5 2.2.1鯉魚潭淨水廠沿革簡介 .................. 5 2.2.2淨水廠淨水程序......................... 6 2.3快濾池種類與去除原理..................... 9 2.3.1傳統快濾過濾池的種類................... 9 2.3.2 快濾池作用的機制...................... 12 2.3.3 鯉魚潭淨水廠快濾池操作現況............ 13 2.4鯉魚潭水庫與淨水廠的藻類問題............. 16 2.4.1鯉魚潭水庫水質與優養化趨勢............. 16 2.4.2藻類對淨水程序之影響................... 19 2.4.3淨水單元去除藻類....................... 21 2.5藻類簡介................................. 23 2.5.1藍綠藻綱(Cyanophyta、blue-green algae) 23 2.5.2矽藻綱(Heterokontophyta-Diatom) ....... 24 2.5.3綠藻門(Chlorophyta,green algae) ...... 24 第三章材料與方法............................ 26 3.1 研究架構................................ 26 3.2鯉魚潭水庫樣品分析....................... 28 3.2.1水庫採樣方法........................... 28 3.2.2 水庫樣品分析方法...................... 29 3.3鯉魚潭淨水廠樣品分析..................... 30 3.3.1實場樣本採集與分析方法................. 30 3.4快濾池模廠試驗........................... 31 3.4.1快濾池模廠的操作參數................... 34 3.4.2快濾池模廠樣本的採集................... 34 3.4.3快濾池模廠樣本的分析................... 36 3.4.4快濾池模廠試驗條件 .................... 37 3.5藻類之分離與純化 ........................ 39 3.5.1 藻類的採集 ........................... 39 3.5.2藻類的分離與純化....................... 39 3.6快濾池模組試驗........................... 42 3.6.1快濾池模組實驗......................... 43 3.6.2快濾池模組實驗樣本採集................. 44 3.6.3快濾池模組實驗樣本分析................. 44 3.6.4快濾池模組試驗條件 .................... 45 3.7 其他分析設備............................ 47 第四章、結果與討論.......................... 48 4.1鯉魚潭水庫採樣結果....................... 48 4.1.1水庫樣品分析(2010.04~2011.04) ......... 48 4.1.2水庫採樣結果討論....................... 58 4.1.3鯉魚潭淨水廠原水調查................... 61 4.1.4水庫藻類觀察........................... 62 4.2快濾池模廠實驗........................... 63 4.2.1第一試程(2010.10.5~7) ................. 63 4.2.2第二試程(2011.02.16~18) ............... 67 4.2.3第三試程(2011.03.23~25) ............... 71 4.2.4第四試程(2011.04.21~23) ............... 77 4.2.5第五試程(2011.05.25~27) ............... 81 4.2.6快濾池模廠綜合比較..................... 83 4.3藻類的分離與純化......................... 84 4.4模組試驗................................. 85 4.4.1第一試程............................... 85 4.4.2第二試程............................... 88 4.4.3第三試程............................... 90 第五章結論與建議............................ 94 5.1結論......................................94 5.2建議..................................... 95 參考文獻.................................... 96 圖目錄 圖2-1鯉魚潭地理位置圖………………………………3 圖2-2鯉魚潭水庫水源運用示意圖……………………4 圖2-32010年與2011年水庫水位歷線圖………………5 圖2-4鯉魚潭給水廠(二期)淨水程序設施及廢(污)水處理流程圖…7 圖2-5鯉魚潭淨水廠的平面配置圖……………………8 圖2-6鯉魚潭淨水廠第一、第二期快濾池實廠圖……6 圖2-7傳統快濾過濾池的種類…………………………10 圖2-8快濾池結構剖面圖………………………………13 圖2-92010年全台水庫「卡爾森指數」統計圖………17 圖2-10鯉魚潭水庫2000~2010年水庫優養化趨勢圖…18 圖2-11鯉魚潭水庫2010年水庫CTSI統計圖……………19 圖2-1297~98年淨水廠二期過濾池效能統計圖………21 圖3-1研究架構圖………………………………………27 圖3-2鯉魚潭水庫採樣位置圖…………………………28 圖3-3干擾相差顯微鏡實體圖…………………………30 圖3-4模廠實體照片……………………………………31 圖3-5快濾池模廠的示意圖……………………………32 圖3-6中央採砂管柱實體圖……………………………35 圖3-7模組架構示意圖…………………………………42 圖3-8模組架設圖………………………………………43 圖4-1第一次採樣藻類分析……………………………49 圖4-2第一次採樣水質背景資料………………………49 圖4-3第二次採樣藻類分析……………………………50 圖4-4第二次採樣水樣背景資料………………………51 圖4-5第三次採樣藻類分析……………………………52 圖4-6第三次採樣水樣質背景資料……………………52 圖4-7第四次採樣藻類分析……………………………54 圖4-8第四次採樣水樣背景資料………………………54 圖4-9第樣五次採樣藻類分析…………………………55 圖4-10第樣五次採樣水樣水質背景資料………………56 圖4-11第樣六次採樣藻類分析…………………………57 圖4-12第樣六次採樣水樣水質背景資料………………58 圖4-13分層水樣藻類數量變化趨勢圖……………59-60 圖4-14第一試程模廠濁度去除效率……………………63 圖4-15第一試程分層濁度變化…………………………64 圖4-16第一試程出流水濁度與水頭損失變化…………65 圖4-17 快濾池過濾期間(a)出流水濁度與(b)水頭損失隨時間之變化......66 圖4-18第一試程各濾層藻類攔截分佈…………………67 圖4-19第二試程模廠濁度去除效率……………………68 圖4-20第二試程分層濁度變化…………………………69 圖4-21第二試程出流水濁度與水頭損失變化…………70 圖4-22第二試程各濾層藻類攔截分佈…………………71 圖4-23第三試程模廠濁度去除率………………………72 圖4-24第三試程分層濁度變化…………………………73 圖4-25第三試程水樣TOC變化圖………………………74 圖4-26第三試程出流水濁度與水頭損失變化…………75 圖4-27第二試程各濾層藻類攔截分佈…………………76 圖4-28第四試程濁度去除效率…………………………77 圖4-29第四試程分層濁度變化…………………………78 圖4-30第四試程水樣TOC變化…………………………78 圖4-31第四試程水頭損失與出流水濁度變化…………79 圖4-32第四試程各濾層藻類攔截分佈…………………80 圖4-33第五試程去除率與出流水濁度變化……………81 圖4-34第五試程水頭損失與出流水濁度變化…………82 圖4-35第五試程TOC去除效率…………………………82 圖4-36第一試程出流水濁度值與出流水含藻量………85 圖4-37第一試程水頭損失與出流水藻類數量…………86 圖4-38第一試程出流水濁度值與水頭損失……………87 圖4-39第一試程砂樣分析………………………………88 圖4-40第二試程出流水濁度值與出流水含藻量………89 圖4-41第二試程水頭損失與出流水藻類數量…………89 圖4-42第二試程砂樣分析………………………………90 圖4-43第三試程出流水濁度值與出流水含藻量………91 圖4-44第三試程水頭損失與出流水藻類數……………92 圖4-45第三試程砂樣分析析……………………………93 圖4-46第三試程分層攔截比較圖………………………93 表目錄 表2-1鯉魚潭淨水廠一期、二期快濾池設計比較………6 表2-2快濾池去除機制……………………………………12 表2-3鯉魚潭淨水廠濾料規格對照表……………………14 表2-4鯉魚潭淨水廠快濾池操作的參數…………………15 表3-1鯉魚潭水庫採樣點位置座標一覽表………………28 表3-2鯉魚潭水庫採樣資訊總覽…………………………29 表3-3模廠設計規格表……………………………………33 表3-4快濾池模廠操作參數表……………………………34 表3-5快濾池模廠試程操作參數…………………………38 表3-6藻類培養基(BBM medium)組成成份………………40 表3-7藻類培養基(Chu’s Medium)組成成份……………41 表3-8模組設計規格表……………………………………43 表3-9快濾池模組操作參數表……………………………44 表3-10快濾池模組試驗操作參數…………………………46 表4-1鯉魚潭淨水廠水樣藻類數量分析…………………61 表4-2模廠試程一~五濁度效能比較………………………83zh_TW
dc.language.isoen_USzh_TW
dc.publisher環境工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201111134500en_US
dc.subjectalgae:filtrationen_US
dc.subject藻類:過濾zh_TW
dc.subjectpiot studyen_US
dc.subject模廠試驗zh_TW
dc.title鯉魚潭淨水廠中快濾池去除水中藻類與藻類阻塞問題之模廠試驗研究zh_TW
dc.titleAlgae removal and clogging through the rapid sand filter in Liyutan Water Ttreatment Plant;a piot studyen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:環境工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.