Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5048
標題: 活性碳作為揮發性有機污染物濃度緩衝及應用特性之研究
Use of Activated Carbon as a Concentration Buffer for VOCs Emission Control from Storage Tanks
作者: 黃博揚
Huang, Bo-Yang
關鍵字: Available Activated Carbon;商用活性碳;p-xylene;Adsorption/Desorption Cycles;Temperature;對-二甲苯(p-xylene);循環吸/脫附;溫度
出版社: 環境工程學系所
引用: 英文參考文獻 Agnihotri, S., Rood, M.J., Rostam-Abadi, M., 2005. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes. Carbon 43, 2379-2388. Brunauer, S., Deming, L. S., Deming, W. S., Teller, E., J. Am. Chem. Soc., 1940. 62, p. 1723. Chuang, C.L., Chiang, P.C., Chang, E.E., 2003. Modeling VOCs adsorption onto activated carbon. Chemosphere 53, 17-27. Chuang, C.L., Chiang, P.C., Chang, E.E., 2003. Modeling VOCs adsorption onto activated carbon. Chemosphere 53, 17-27. Chuang, C.L., Chiang, P.C., Chang, E.E., Modeling VOCs adsorption onto activated carbon. Chemosphere, 2003, 53, p.17-27. Clark, M.M., 1996. Transport modeling for environmental engineering and scientists, John Wiley & Sons, Inc., New York, U.S.A. Costa, P. M.F.J., Friedrichs, S., Sloan, J., Green, M. L.H., Structural studies of purified double walled carbon nanotubes (DWNTs) using phase restored high-resolution imaging. Carbon, 2004, 42, p. 2527-2533 Daekeun Kim, Zhangli Cai, George A. Sorial 2010 Feasibility of Adsorption/Desorption Cycles in a Two-Bed Adsorption Unit for Dampening Biofilter Performance Fluctuation Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0071 David, W.M., Erickson, C.L., Johnston, C.T., Delfino, J.J., Porter, J.E., Quantitative Fourier Transform Infrared spectroscopic investigation of humic substance functional group composition. Chemosphere, 1999, 38: 2913-2928. Demirbas, E., Dizge, N., Sulak, M.T., Kobya, M., 2009. Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chemical Engineering Journal 148, 480-487. Dwivedi, P., Gaur, V., Sharma, A., Verma, N., 2004. Comparative study of removal of volatile organic compounds by cryogenic condensation and adsorption by activated carbon fiber. Separation and purification technology 39, 23-37. Dwivedi, P., Gaur, V., Sharma, A., Verma, N., 2004. Comparative study of removal of volatile organic compounds by cryogenic condensation and adsorption by activated carbon fiber. Separation and purification technology 39, 23-37. Dwivedi, P., Gaur, V., Sharma, A., Verma, N., Comparetive study of removal of voltile orgamic compounds by cryogenic condensation and adsorption by activated carbon fiber. Sep. Purif. Technol. 2004, 39, 23-37. Ebbesen, T.W., Ajayan, P.M., Hinram, H., Anigaki, K.T., Role of SP3 defect structure in graphite and carbon nanotubes. Nature, 1994, 367, p. 19. Ebbing, D.D., Gammon, S.D., General Chemistry, 6th ed.; Houghton: Boston, MA, 1999. Endo, M., Takeachi, K., Igarashi, S., Kobori, K., Shiraishi, M., Kroto, H.W., The production and structure of pyrolytic carbon nanotubes. J. Phys. Chem. Solids, 1993. 54, p. 1841. Eswaramoorthy, M., R. Sen, C.N.R. Rao, A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors. Chemical Physics Letters, 1999. 304, p. 207. Gauden, P.A., Terzyk, A.P., Rychlicki, G., Kowalczyk, P., Loata, K., Thermodynamic properties of benzene adsorbed in activated carbons and multi-walled carbon nanotubes. Chem. Phys. Lett., 2006, 421(4-6): 409-414. Gregg, S.J., Sing, K.S.W., Adsorption, Surface Area and Porosity, Academic Press, New York, 1982. Hyung, H., Kim, J. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of nom characteristics and water quality parameters. Environ. Sci. Technol. 2008, 42, p.4416-4421. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354, p. 56. IMSL (International Mathematical and Statistical Library INC.) 1987. Contents Document, Vol. 2, Version 1.0, Houston, TX. Joly, A., Perrard, A., 2009. Linear driving force models for dynamic adsorption of volatile organic compound traces by porous adsorbent beds. Mathematics and Computers in Simulation 79, 3492-3499. Joly, A., Perrard, A., 2009. Linear driving force models for dynamic adsorption of volatile organic compound traces by porous adsorbent beds. Mathematics and Computers in Simulation 79, 3492-3499. Kaplan, D., Nir, I., Shmueli, L., 2006. Effects of high relative humidity on the dynamic adsorption of dimethyl methylphosphonate (DMMP) on activated carbon. Carbon 44, 3247-3254. Kaplan, D., Nir, I., Shmueli, L., 2006. Effects of high relative humidity on the dynamic adsorption of dimethyl methylphosphonate (DMMP) on activated carbon. Carbon 44, 3247-3254. Kuo, C.Y., Desorption and re-adsorption of carbon nanotubes: Comparisons of sodium hydroxide and microwave irradiation process. J. Hazard. Mater., 2008, 152, p.9-12. Lambert, J.M., Ajayan, P.M., Bernier, P.J., Planeix, M., Brotons, V., Coq, B., Castaing, J., Improving conditions towards isolating single-shell carbon nanotubes. Chem. Phys. Let., 1994. 226, p. 264. Leyva-Ramos, R., Diaz-Flores, P.E., Leyva-Ramos, J., Femat-Flores, R.A., 2007. Kinetic modeling of pentachlorophenol adsorption from aqueous solution on activated carbon fibers. Carbon 45, 2280-2289. Lillo-Rodenas, M. A., Cazorla-Amoros, D., Linares-Solano, A., Behaviour of activated carons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon, 2005. 43:1758. Liu J.-M., Li L., Fan H.-L., Ning Z.-W., Zhao P., Evaluation of Single-walled Carbon Nanotubes as Novel Adsorbent for Volatile Organic Compounds. J. Anal. Chem., 2007. 35, p. 830-834 Lo, S.C., Lin, C.F., Wu, C.H.,Hsieh, P.H., Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chlorophenol. Journal of Hazardous Materials, 2004. B114, p. 183. Marilou M. N, Ameziane H, Peter R.W,William M. M, 2009 Activated carbon load equalization of transient concentration spikes of gas-phase toluene. Louisiana State University, Baton Rouge, LA 70803, USA Marilou M. N, William M. M, 2010 Effects of water vapor on activated carbon load equalization ofgas phase toluene. LA 70803, USA Mikhail, R. S., Brunauer, S., Bodor, E. E., Investigations of a complete pore structure analysis, J. Colloid Interface Sci., 1968. 26, p.45. Puerta, A., Vidal-Madjar, C., Jaulmes, A., Diez-Masa, J., Frutos, M.d., 2006. Frontal analysis for characterizing the adsorption–desorption behavior of β-lactoglobulin on immunoadsorbents. Journal of Chromatography A 1119, 34-42. Ruoff, R.S., Tersoff, J., Lorents, D.C., Subramoney, S., Chen, B., Radial deformation of carbon nanotubes by Van-der Waals force. Nature, 1993. 364, p. 514. Ruthven, D. M., 1984. Principles of adsorption and adsorption process. John Wiley & Sons, Inc., New Jersey, U.S.A. Ruthven, D. M., Principles of adsorption and adsorption process. John Wiley & Sons, Inc., New Jersey, U.S.A., 1984. Sone, H., Fugetsu, B., Tsukada, T., Endo, M., Affinity-based elimination of aromatic VOCs by highly crystalline multi-walled carbon nanotubes. Talanta, 2008, 74, p. 1265-1270. Szekely, J., Evans, J.W., Sohn, H.Y., 1976. Gas-Solid Reaction; Academic Press: New York. William M. M, Congna Li 2005 A design methodology for activated carbon load equalization systems applied to biofilters treating intermittent toluene loading. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803-6405, USA 中文參考文獻 排放管道中總碳氫化合物及非甲烷總碳氫化合物含量自動檢測方法-線上火燄離子化偵測法(NIEA A723.71B)。(87)環署檢字第77198號公告。 勞工安全衛生研究所,物質安全資料表。 化工技術雜誌,第 11 卷第 10 期,第 190~198 頁。 行政院環保署,(2005),發佈之「揮發性有機物空氣污染管制及排放標準」 行政院環境保護署(1996)有害空氣污染物排放調查及管制規範研訂計畫。 李孟珊,(2006),多壁奈米碳管應用於苯廢氣處理之特性研究,碩士論文,國立中興大學環境工程系。 李孟珊,(2006),多壁奈米碳管應用於苯廢氣處理之特性研究,碩士論文,國立中興大學環境工程系。 林志芳(2002)以理論探討生物濾床法處理VOCs之研究。國立中興大學環境工程學系碩士論文。 倪雅惠,(1998) “揮發性有機物污染土壤復育工程中之吸附行為—各種土壤成份對吸附之貢獻”,碩士論文,國立台灣大學環境工程研究所,台北, 張美玲,(1998) ,“揮發性有機物氣體在土壤中之吸脫附動力”,博士論文,國立台灣大學環境工程研究所,台北。 許世杰,(2009),奈米碳管吸附氣相異丙醇之研究,博士論文,國立中興大學環境工程系。 陳心傑, (2008), 財團法人紡織產業綜合研究所產品開發及推廣部 , 有機氣體吸附過濾評估研究 陳文發,(2008),改質奈米碳管及中孔洞矽材吸附二氧化碳之研究,碩士論文,國立中興大學環境工程系。 陳佩貞,(1999)“揮發性有機物於土壤中慢吸脫附行為之探討—不同黏土礦物的影響”,碩士論文,國立台灣大學環境工程研究所,台北 。 陳威錦,(2004),熱重分析法探討球狀活性碳吸附氣相氯化汞之吸附動力研究,碩士論文,國立中山大學環境工程研究所 。 彭兆群,黃博雄,(2003)「氣相過濾材發展現況及其發展趨勢」。 魏同成譯,(1990), 活性碳及其工業應用,中國環境科學出版社
摘要: 
研究以實場上所使用之商用活性碳作為吸附材,吸附具揮發性之有機污染物質對-二甲苯蒸氣,實驗主要分為兩大部分進行:第一部分為活性碳緩衝能力(buffer)的測試;第二部分為實場上之活性碳緩衝塔的設計及效益評估。實驗以模擬實場儲槽內之p-xylene因日夜及氣候(溫度、日照強度)條件的變化而逸散至大氣之濃度作為本研究實驗之進流濃度,範圍約取1500 ppm至7500 ppm內及分別在不同溫度(15°C、25°C 、35°C 、45°C及55°C)下進行等溫循環吸/脫附實驗,瞭解試驗所需的吸附時間及再生吸附時間、計算各平衡溫度下等溫(再生)吸附及脫附容量,由實驗結果可算出等容吸/脫附熱,了解其吸/脫附能量大小,在本實驗的吸附過程為一放熱反應,而脫附反應為一吸熱反應;而經由模式模擬計算出其反應動力學之吸附速率常數及脫附速率常數。活性碳經由空氣流量為0.3 L/min,固定脫附時間90分鐘之脫附再生試驗,分別由不同溫(15-55°C)影響測試結果顯示,系統在55°C有較佳的脫附效能,最大的平均脫附容量可達127.8 mg/g;而在15°C平均進流濃度1500 ppm時的平均脫附容量為最低,只有37.4 mg/g (5次平均)。在吸/脫附試程中,活性碳經過5次反覆吸/脫附後,而計算每一吸/脫附之容量及所需花費的時間。由實場之運作狀況及數據觀測,可計算並預估實場的操作吸附量(working capacity)可選擇最佳的操作效率評估實場應用之可行性,以現場最大逸散量當破出濃度為進流濃度的50 %時,即可再次脫附。故設計實場所需要之活性碳量,做到有效率及適時的補充與汰換活性碳,活性碳的填裝量太少則無法達到緩衝的效能。因此,為了提升其處理效率,本研究亦對實場活性碳塔提出適合之改善方案,提供一穩定之進流濃度可長期操作後端防制設備。

This study uses commercial activated carbon as adsorbent. the volatile organic compound p-xylene vapor as adsorbate. The experiment is divided into two major part: The first part is activated carbon buffer capacity test; and the second part is designing activated carbon tower buffer in the field. The experiment''s temperature and emission concentration conditions simulate the condition in the field storage tank. The climate (temperature, solar intensity) day and night change. It can make the product emission to atmosphere. The experiment''s concentration is 1500 ppm, 3000 ppm, 4500 ppm, 6000 ppm and 7500 ppm for the adsorption test. And testing by the temperature (15°C, 25°C, 35°C, 45°C and 55°C) for the adsorption and desorption isothermal cycles experiment, to understand the time need for adsorption and the regenerated adsorption experiment, isosteric adsorption heat in different capacity, and in this experiment''s adsorption process is an exothermic reaction, desorption is an endothermic reaction. The Fortran program is used to compute kinetic''s adsorption rate constant and desorption rate constant. The p-xylene on activated carbon is desorpted by air flow. The flow rate is 0.3 L/min regenerated in every 90 minutes. The temperature 55°C has the best desorption capacity, the capacity is 127.8mg/g. When temperature is 15°C and inlet concentration is 1500 ppm. The desorption capacity is the lowest, only 37.4mg/g (average). In adsorption/desorption process regeneration, adsorption and desorption is processed five times, to calculates each adsorption and desorption time and each capacity. From the operation condition and the concentration data observation in the field, can calculate and estimate that the field''s operation adsorptive capacity (working capacity), may choose the best operating efficiency to appraise feasibility of the field application, and the right moment to replace the activated carbon. If the activated carbon filling are too few. It may be unable to deal with contaminants by control equipment.
And if fill excessively activated carbons will make the biofilter bed (microorganism) lack the carbon source supplies, the pollutant will become the poison to the microorganism. So, providing stabilizes inlet concentration to be possible the long-term operation biofilter bed for microorganism to obtain stable, and enough carbon source.
URI: http://hdl.handle.net/11455/5048
其他識別: U0005-2306201113253400
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.