Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5073
標題: 探討微生物電解電池於不同操作條件下之產氫效能與菌群結構
Hydrogen production and microbial communities study of microbial electrolysis cells (MECs)
作者: 張佩雯
Chang, Pei-Wen
關鍵字: Microbial electrolysis cells;微生物電解電池;Inoculum;Substrate;Exoelectrogens;微生物來源;基質來源;產電菌
出版社: 環境工程學系所
引用: 參考文獻 中文部分 圖書 王革華與艾德生 (2008) 新能源概論. 台灣 台北: 五南圖書出版股份有限 公司. 曲新生與陳發林 (2006) 氫能技術. 台灣台北:五南圖書出版股份有限公司. 經濟部能源局 (2010) 2010 年能源產業技術白皮書. 網路資源 經濟部能源局-工業技術研究院綠能與環境研究所 (2009) 再生能源網. URL http://www.re.org.tw 臺灣綜合研究院-臺灣因應氣候變化綱要公約資訊網 (2009) 京都議定書. URL http://www.tri.org.tw/unfccc/Unfccc/UNFCCC02.htm Yang, A. (2009) 癮科學:替代能源-生質能. URL http://chinese.engadget.com/2008/11/21/bioenergy/ 英文部分 Books Bard, A.J., and Faulkner, L.R. (2000) Electrochemical Methods: Fundamentals and Applications, 2nd Edition. New York: John Wiley & Sons. Crow, D.R. (1994) Principles and Applications of Electrochemistry. UK. Energy Information Administration, U.S. (2010) Annual Energy Outlook 2010. Green, D.W., and Perry, R.H. (2008) Perry''s Chemical Engineers'' Handbook (8th Edition). In: McGraw-Hill. Lewandowski, Z., and Boltz, J.P. (2011) Biofilms in Water and Wastewater Treatment. In Treatise on Water Science. Peter, W. (ed). Oxford: Elsevier, pp. 529-570. Logan, B.E. (1998) Environmental Transport Processes. Logan, B.E. (2008b) Microbial Fuel Cells. New York: John Wiley & Sons. Madigan, M.T., Martinko, J.M., Dunlap, P.V., and Clark, D.P. (2008) Brock Biology of Microorganisms (12th Edition). Rittman, B.E., and McCarty, P.L. (2001) Environmental Biotechnology : Principles & Applications. Boston: McGraw-Hill. Tonjum, T. (2005) Bergey’s ManualR of Systematic Bacteriology. In. Brenner, D.J., Krieg, N.R., Garrity, G.M., Staley, J.T., Boone, D.R., Vos, P. et al. (eds): Springer US, pp. 777-798. Journal Articles Aelterman, P., Rabaey, K., Pham, H.T., Boon, N., and Verstraete, W. (2006) Continuous Electricity Generation at High Voltages and Currents Using Stacked Microbial Fuel Cells. Environmental Science & Technology 40: 3388-3394. Ahn, Y., and Logan, B.E. (2010) Effectiveness of Domestic Wastewater Treatment Using Microbial Fuel Cells at Ambient and Mesophilic Temperatures. Bioresource Technology 101: 469-475. Akedo, M., Cooney, C.L., and Sinskey, A.J. (1983) Direct Demonstration of Lactate-Acrylate Interconversion in Clostridium Propionicum. Nat Biotech 1: 791-794. Akorede, M.F., Hizam, H., and Pouresmaeil, E. (2010) Distributed Energy Resources and Benefits to the Environment. Renewable and Sustainable Energy Reviews 14: 724-734. Allen, R.M., and Bennetto, H.P. (1993) Microbial Fuel Cells. Electricity Production from Carbohydrates. Applied Biochemistry and Biotechnology 39-40: 27-40. Ambler, J.R., and Logan, B.E. (2011) Evaluation of Stainless Steel Cathodes and a Bicarbonate Buffer for Hydrogen Production in Microbial 120 Electrolysis Cells Using a New Method for Measuring Gas Production. International Journal of Hydrogen Energy 36: 160-166. Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A., and Domiguez-Espinosa, R. (2004) Production of Bioenergy and Biochemicals from Industrial and Agricultural Wastewater. Trends in Biotechnology 22: 477-485. Archibald, F.S., and DeVoe, I.W. (1978) Iron in Neisseria Meningitidis: Minimum Requirements, Effects of Limitation, and Characteristics of Uptake. J. Bacteriol. 136: 35-48. Archibald, F.S., and Duong, M.N. (1986) Superoxide Dismutase and Oxygen Toxicity Defenses in the Genus Neisseria. Infect. Immun. 51: 631-641. Armor, J.N. (1999) The Multiple Roles for Catalysis in the Production of H2. Applied Catalysis A: General 176: 159-176. Bae, H.-S., Rash, B.A., Rainey, F.A., Nobre, M.F., Tiago, I., da Costa, M.S., and Moe, W.M. (2007) Description of Azospira Restricta Sp. Nov., a Nitrogen-Fixing Bacterium Isolated from Groundwater. International Journal of Systematic and Evolutionary Microbiology 57: 1521-1526. Bae, H., Kim, H., Jeong, S., and Lee, S. (2011) Changes in the Relative Abundance of Biofilm-Forming Bacteria by Conventional Sand-Filtration and Microfiltration as Pretreatments for Seawater Reverse Osmosis Desalination. Desalination In Press, Corrected Proof. Bakhshian, S., Kariminia, H.-R., and Roshandel, R. (2011) Bioelectricity Generation Enhancement in a Dual Chamber Microbial Fuel Cell under Cathodic Enzyme Catalyzed Dye Decolorization. Bioresource Technology In Press, Accepted Manuscript. Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., Colpaert, J.V., Vangronsveld, J., and van der Lelie, D. (2004) Engineered Endophytic Bacteria Improve Phytoremediation of Water-Soluble, Volatile, Organic Pollutants. Nat Biotech 22: 583-588. 121 Bardiya, N., and Bae, J.-H. (2011) Dissimilatory Perchlorate Reduction: A Review. Microbiological Research 166: 237-254. Battle, S.E., Meyer, F., Rello, J., Kung, V.L., and Hauser, A.R. (2008) Hybrid Pathogenicity Island Pagi-5 Contributes to the Highly Virulent Phenotype of a Pseudomonas Aeruginosa Isolate in Mammals. J. Bacteriol. 190: 7130-7140. BC, K., BL, P., RJ, D., SK, C., KP, N., and DR, L. (2008) Insights into Genes Involved in Electricity Generation in Geobacter Sulfurreducens Via Whole Genome Microarray Analysis of the Omcf-Deficient Mutant. Bioelectrochemistry 73(1): 70-75. Behera, M., Jana, P.S., and Ghangrekar, M.M. (2010) Performance Evaluation of Low Cost Microbial Fuel Cell Fabricated Using Earthen Pot with Biotic and Abiotic Cathode. Bioresource Technology 101: 1183-1189. Beliaev, A.S., and Saffarini, D.A. (1998) Shewanella Putrefaciens Mtrb Encodes an Outer Membrane Protein Required for Fe(Iii) and Mn(Iv) Reduction. J. Bacteriol. 180: 6292-6297. Beliaev, A.S., Saffarini, D.A., McLaughlin, J.L., and Hunnicutt, D. (2001) Mtrc, an Outer Membrane Decahaem C Cytochrome Required for Metal Reduction in Shewanella Putrefaciens Mr-1. Molecular Microbiology 39: 722-730. Biffinger, J.C., Ray, R., Little, B., and Ringeisen, B.R. (2007) Diversifying Biological Fuel Cell Designs by Use of Nanoporous Filters. Environmental Science & Technology 41: 1444-1449. Bond, D.R., and Lovley, D.R. (2003) Electricity Production by Geobacter Sulfurreducens Attached to Electrodes. Appl. Environ. Microbiol. 69: 1548-1555. Bond, D.R., Holmes, D.E., Tender, L.M., and Lovley, D.R. (2002) Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments. Science 295: 483-485. 122 Borole, A.P., Hamilton, C.Y., and Vishnivetskaya, T.A. (2011) Enhancement in Current Density and Energy Conversion Efficiency of 3-Dimensional Mfc Anodes Using Pre-Enriched Consortium and Continuous Supply of Electron Donors. Bioresource Technology 102: 5098-5104. Borole, A.P., Hamilton, C.Y., Vishnivetskaya, T., Leak, D., and Andras, C. (2009a) Improving Power Production in Acetate-Fed Microbial Fuel Cells Via Enrichment of Exoelectrogenic Organisms in Flow-through Systems. Biochemical Engineering Journal 48: 71-80. Borole, A.P., Hamilton, C.Y., Vishnivetskaya, T.A., Leak, D., Andras, C., Morrell-Falvey, J., Keller, M., and Davison, B. (2009b) Integrating Engineering Design Improvements with Exoelectrogen Enrichment Process to Increase Power Output from Microbial Fuel Cells. Journal of Power Sources 191: 520-527. Brune, A., Ludwig, W., and Schink, B. (2002) Propionivibrio Limicola Sp. Nov., a Fermentative Bacterium Specialized in the Degradation of Hydroaromatic Compounds, Reclassification of Propionibacter Pelophilus as Propionivibrio Pelophilus Comb. Nov. And Amended Description of the Genus Propionivibrio. International Journal of Systematic and Evolutionary Microbiology 52: 441-444. Caccavo, F., Jr, Lonergan, D.J., Lovley, D.R., Davis, M., Stolz, J.F., and McInerney, M.J. (1994) Geobacter Sulfurreducens Sp. Nov., a Hydrogen- and Acetate-Oxidizing Dissimilatory Metal-Reducing Microorganism. Appl. Environ. Microbiol. 60: 3752-3759. Call, D.F., Wagner, R.C., and Logan, B.E. (2009a) Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell. Applied and Environmental Microbiology 75: 7579-7587. Call, D.F., Wagner, R.C., and Logan, B.E. (2009b) Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell. Appl. Environ. Microbiol. 75: 7579-7587. Call, D.F., Merrill, M.D., and Logan, B.E. (2009c) High Surface Area Stainless 123 Steel Brushes as Cathodes in Microbial Electrolysis Cells. Environmental Science & Technology 43: 2179-2183. Cao, X., Huang, X., Liang, P., Xiao, K., Zhou, Y., Zhang, X., and Logan, B.E. (2009) A New Method for Water Desalination Using Microbial Desalination Cells. Environmental Science & Technology 43: 7148-7152. Cao, Y., Hu, Y., Sun, J., and Hou, B. (2010) Explore Various Co-Substrates for Simultaneous Electricity Generation and Congo Red Degradation in Air-Cathode Single-Chamber Microbial Fuel Cell. Bioelectrochemistry 79: 71-76. Chae, K.-J., Choi, M.-J., Lee, J., Ajayi, F.F., and Kim, I.S. (2008) Biohydrogen Production Via Biocatalyzed Electrolysis in Acetate-Fed Bioelectrochemical Cells and Microbial Community Analysis. International Journal of Hydrogen Energy 33: 5184-5192. Chae, K.-J., Choi, M.-J., Lee, J.-W., Kim, K.-Y., and Kim, I.S. (2009) Effect of Different Substrates on the Performance, Bacterial Diversity, and Bacterial Viability in Microbial Fuel Cells. Bioresource Technology 100: 3518-3525. Chang, B.-V., Chiang, C.-W., and Yuan, S.-Y. (1998) Dechlorination of Pentachlorophenol in Anaerobic Sewage Sludge. Chemosphere 36: 537-545. Chaudhuri, S.K., and Lovley, D.R. (2003) Electricity Generation by Direct Oxidation of Glucose in Mediatorless Microbial Fuel Cells. Nat Biotech 21: 1229-1232. Chen, B.-Y., Zhang, M.-M., Ding, Y., and Chang, C.-T. (2010) Feasibility Study of Simultaneous Bioelectricity Generation and Dye Decolorization Using Naturally Occurring Decolorizers. Journal of the Taiwan Institute of Chemical Engineers 41: 682-688. Cheng, S., and Logan, B.E. (2007) Ammonia Treatment of Carbon Cloth Anodes to Enhance Power Generation of Microbial Fuel Cells. 124 Electrochemistry Communications 9: 492-496. Cheng, S., and Logan, B.E. (2011) High Hydrogen Production Rate of Microbial Electrolysis Cell (Mec) with Reduced Electrode Spacing. Bioresource Technology 102: 3571-3574. Cheng, S., Xing, D., and Logan, B.E. (2010) Electricity Generation of Single-Chamber Microbial Fuel Cells at Low Temperatures. Biosensors and Bioelectronics In Press, Corrected Proof. Cheng, S., Xing, D., Call, D.F., and Logan, B.E. (2009) Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environmental Science & Technology 43: 3953-3958. Chung, D.M., Choi, M.H., Song, J.J., Yoon, S.C., Kang, I.-K., and Huh, N.E. (2001) Intracellular Degradation of Two Structurally Different Polyhydroxyalkanoic Acids Accumulated in Pseudomonas Putida and Pseudomonas Citronellolis from Mixtures of Octanoic Acid and 5-Phenylvaleric Acid. International Journal of Biological Macromolecules 29: 243-250. Cusick, R., Bryan, B., Parker, D., Merrill, M., Mehanna, M., Kiely, P., Liu, G., and Logan, B. (2011) Performance of a Pilot-Scale Continuous Flow Microbial Electrolysis Cell Fed Winery Wastewater. Applied microbiology and biotechnology 89: 2053-2063. Cusick, R.D., Kiely, P.D., and Logan, B.E. (2010) A Monetary Comparison of Energy Recovered from Microbial Fuel Cells and Microbial Electrolysis Cells Fed Winery or Domestic Wastewaters. International Journal of Hydrogen Energy 35: 8855-8861. Daniel, D.K., Das Mankidy, B., Ambarish, K., and Manogari, R. (2009) Construction and Operation of a Microbial Fuel Cell for Electricity Generation from Wastewater. International Journal of Hydrogen Energy 34: 7555-7560. Das, D., and Veziroglu, T.N. (2001) Hydrogen Production by Biological 125 Processes: A Survey of Literature. International Journal of Hydrogen Energy 26: 13-28. Deng, Q., Li, X., Zuo, J., Ling, A., and Logan, B.E. (2010) Power Generation Using an Activated Carbon Fiber Felt Cathode in an Upflow Microbial Fuel Cell. Journal of Power Sources 195: 1130-1135. Denton, M., and Kerr, K.G. (1998) Microbiological and Clinical Aspects of Infection Associated with Stenotrophomonas Maltophilia. Clin. Microbiol. Rev. 11: 57-80. Di Lorenzo, M., Scott, K., Curtis, T.P., and Head, I.M. (2010) Effect of Increasing Anode Surface Area on the Performance of a Single Chamber Microbial Fuel Cell. Chemical Engineering Journal 156: 40-48. Ditzig, J., Liu, H., and Logan, B.E. (2007) Production of Hydrogen from Domestic Wastewater Using a Bioelectrochemically Assisted Microbial Reactor. International Journal of Hydrogen Energy 32: 2296-2304. Dobbin, P.S., Powell, A.K., McEwan, A.G., and Richardson, D.J. (1995) The Influence of Chelating Agents Upon the Dissimilatory Reduction of Fe(Iii) by <I>Shewanella Putrefaciens</I&Gt. BioMetals 8: 163-173. Dumas, C., Mollica, A., Feron, D., Basseguy, R., Etcheverry, L., and Bergel, A. (2008) Checking Graphite and Stainless Anodes with an Experimental Model of Marine Microbial Fuel Cell. Bioresource Technology 99: 8887-8894. Elias, D.A., Yang, F., Mottaz, H.M., Beliaev, A.S., and Lipton, M.S. (2007) Enrichment of Functional Redox Reactive Proteins and Identification by Mass Spectrometry Results in Several Terminal Fe(Iii)-Reducing Candidate Proteins in Shewanella Oneidensis Mr-1. Microbiol Methods 68(2): 367-375. Endo, G., Noike, T., and Matsumoto, J. (1982) Characteristics of Cellulose and Glucose Decomposition in Acidogenic Phase of Anaerobic Digestion. 126 Proc Soc Civ Engrs 325: 61-68. Escapa, A., Manuel, M.F., Moran, A., Gomez, X., Guiot, S.R., and Tartakovsky, B. (2009) Hydrogen Production from Glycerol in a Membraneless Microbial Electrolysis Cell. Energy & Fuels 23: 4612-4618. Fajardo, A., Martinez-Martin, N., Mercadillo, M., Galan, J.C., Ghysels, B., Matthijs, S., Cornelis, P., Wiehlmann, L., Tummler, B., Baquero, F., and Martinez, J.L. (2008) The Neglected Intrinsic Resistome of Bacterial Pathogens. PLoS ONE 3: e1619. Fall, R.R. (1976) Stabilization of an Acetyl-Coenzyme a Carboxylase Complex from Pseudomonas Citronellolis. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 450: 475-480. Fan, Y., Hu, H., and Liu, H. (2007a) Enhanced Coulombic Efficiency and Power Density of Air-Cathode Microbial Fuel Cells with an Improved Cell Configuration. Journal of Power Sources 171: 348-354. Fan, Y., Hu, H., and Liu, H. (2007b) Sustainable Power Generation in Microbial Fuel Cells Using Bicarbonate Buffer and Proton Transfer Mechanisms. Environmental Science & Technology 41: 8154-8158. Feng, Y., Yang, Q., Wang, X., and Logan, B.E. (2010) Treatment of Carbon Fiber Brush Anodes for Improving Power Generation in Air-Cathode Microbial Fuel Cells. Journal of Power Sources 195: 1841-1844. Ferguson, W.J., Braunschweiger, K.I., Braunschweiger, W.R., Smith, J.R., McCormick, J.J., Wasmann, C.C., Jarvis, N.P., Bell, D.H., and Good, N.E. (1980) Hydrogen Ion Buffers for Biological Research. Analytical Biochemistry 104: 300-310. Fonknechten, N., Chaussonnerie, S., Tricot, S., Lajus, A., Andreesen, J., Perchat, N., Pelletier, E., Gouyvenoux, M., Barbe, V., Salanoubat, M., Le Paslier, D., Weissenbach, J., Cohen, G., and Kreimeyer, A. (2010) Clostridium Sticklandii, a Specialist in Amino Acid Degradation:Revisiting Its Metabolism through Its Genome Sequence. BMC Genomics 11: 555. 127 Freni, S., Calogero, G., and Cavallaro, S. (2000) Hydrogen Production from Methane through Catalytic Partial Oxidation Reactions. Journal of Power Sources 87: 28-38. Friedrich, J.M., Ponce-de-Leon, C., Reade, G.W., and Walsh, F.C. (2004) Reticulated Vitreous Carbon as an Electrode Material. Journal of Electroanalytical Chemistry 561: 203-217. Fuchs, J., Johannssen, W., Rohde, M., and Mayer, F. (1988) Pyruvate Carboxylase from Pseudomonas Citronellolis: Shape of the Enzyme, and Localization of Its Prosthetic Biotin Group by Electron Microscopic Affinity Labeling. FEBS letters 231: 102-106. Geelhoed, J.S., and Stams, A.J.M. (2010) Electricity-Assisted Biological Hydrogen Production from Acetate by Geobacter Sulfurreducens. Environmental Science & Technology 45: 815-820. Geelhoed, J.S., Hamelers, H.V.M., and Stams, A.J.M. (2010) Electricity-Mediated Biological Hydrogen Production. Current Opinion in Microbiology 13: 307-315. Gil, G.-C., Chang, I.-S., Kim, B.H., Kim, M., Jang, J.-K., Park, H.S., and Kim, H.J. (2003) Operational Parameters Affecting the Performannce of a Mediator-Less Microbial Fuel Cell. Biosensors and Bioelectronics 18: 327-334. Girguis, P.R., Nielsen, M.E., and Figueroa, I. (2010) Harnessing Energy from Marine Productivity Using Bioelectrochemical Systems. Current Opinion in Biotechnology 21: 252-258. Good, N.E., Winget, G.D., Winter, W., Connolly, T.N., Izawa, S., and Singh, R.M.M. (1966) Hydrogen Ion Buffers for Biological Research*. Biochemistry 5: 467-477. Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.S., Kim, B.H., Kim, K.S., Culley, D.E., Reed, S.B., Romine, M.F., Saffarini, D.A., Hill, E.A., Shi, L., Elias, D.A., Kennedy, D.W., Pinchuk, G., Watanabe, K., Ishii, S.i., Logan, B., 128 Nealson, K.H., and Fredrickson, J.K. (2006) Electrically Conductive Bacterial Nanowires Produced by Shewanella Oneidensis Strain Mr-1 and Other Microorganisms. Proceedings of the National Academy of Sciences 103: 11358-11363. Grimes, D.J., Woese, C.R., MacDonell, M.T., and Colwell, R.R. (1997) Systematic Study of the Genus Vogesella Gen. Nov. And Its Type Species, Vogesella Indigofera Comb. Nov. International Journal of Systematic Bacteriology 47: 19-27. Guo, K., Tang, X., Du, Z., and Li, H. (2010) Hydrogen Production from Acetate in a Cathode-on-Top Single-Chamber Microbial Electrolysis Cell with a Mipor Cathode. Biochemical Engineering Journal 51: 48-52. Harnisch, F., and Schroder, U. (2009) Selectivity Versus Mobility: Separation of Anode and Cathode in Microbial Bioelectrochemical Systems. ChemSusChem 2: 921-926. Harnisch, F., Warmbier, R., Schneider, R., and Schroder, U. (2009) Modeling the Ion Transfer and Polarization of Ion Exchange Membranes in Bioelectrochemical Systems. Bioelectrochemistry 75: 136-141. Hau, H.H., Gilbert, A., Coursolle, D., and Gralnick, J.A. (2008) Anaerobic Respiration of Cobalt by Shewanella Oneidensis Strain Mr-1: Mechanism and Consequences. Applied and Environmental Microbiology: AEM.00840-00808. He, S., and McMahon, K.D. (2011) &quot;Candidatus Accumulibacter&quot; Gene Expression in Response to Dynamic Ebpr Conditions. ISME J 5: 329-340. He, Z., Huang, Y., Manohar, A.K., and Mansfeld, F. (2008) Effect of Electrolyte Ph on the Rate of the Anodic and Cathodic Reactions in an Air-Cathode Microbial Fuel Cell. Bioelectrochemistry 74: 78-82. Heidelberg, J.F., Paulsen, I.T., Nelson, K.E., Gaidos, E.J., Nelson, W.C., Read, T.D., Eisen, J.A., Seshadri, R., Ward, N., Methe, B., Clayton, R.A., Meyer, T., Tsapin, A., Scott, J., Beanan, M., Brinkac, L., Daugherty, S.,DeBoy, R.T., Dodson, R.J., Durkin, A.S., Haft, D.H., Kolonay, J.F., Madupu, R., Peterson, J.D., Umayam, L.A., White, O., Wolf, A.M., Vamathevan, J., Weidman, J., Impraim, M., Lee, K., Berry, K., Lee, C., Mueller, J., Khouri, H., Gill, J., Utterback, T.R., McDonald, L.A., Feldblyum, T.V., Smith, H.O., Venter, J.C., Nealson, K.H., and Fraser, C.M. (2002) Genome Sequence of the Dissimilatory Metal Ion-Reducing Bacterium Shewanella Oneidensis. Nat Biotech 20: 1118-1123. Heilmann, J., and Logan, B.E. (2006) Production of Electricity from Proteins Using a Microbial Fuel Cell. Water Environment Research 78(5): 531-537. Herrmann, G., Jayamani, E., Mai, G., and Buckel, W. (2008) Energy Conservation Via Electron-Transferring Flavoprotein in Anaerobic Bacteria. J Bacteriol 190: 784 - 791. Holladay, J.D., Hu, J., King, D.L., and Wang, Y. (2009) An Overview of Hydrogen Production Technologies. Catalysis Today 139: 244-260. Holmes, D.E., Bond, D.R., O’Neil, R.A., Reimers, C.E., Tender, L.R., and Lovley, D.R. (2004) Microbial Communities Associated with Electrodes Harvesting Electricity from a Variety of Aquatic Sediments. Microbial Ecology 48: 178-190. Hrapovic, S., Manuel, M.F., Luong, J.H.T., Guiot, S.R., and Tartakovsky, B. (2010) Electrodeposition of Nickel Particles on a Gas Diffusion Cathode for Hydrogen Production in a Microbial Electrolysis Cell. International Journal of Hydrogen Energy 35: 7313-7320. Hu, H., Fan, Y., and Liu, H. (2008) Hydrogen Production Using Single-Chamber Membrane-Free Microbial Electrolysis Cells. Water Research 42: 4172-4178. Hu, H., Fan, Y., and Liu, H. (2009) Hydrogen Production in Single-Chamber Tubular Microbial Electrolysis Cells Using Non-Precious-Metal Catalysts. International Journal of Hydrogen Energy 34: 8535-8542. 130 Hu, H., Fan, Y., and Liu, H. (2010) Optimization of Nimo Catalyst for Hydrogen Production in Microbial Electrolysis Cells. International Journal of Hydrogen Energy 35: 3227-3233. Huang, L., and Logan, B. (2008) Electricity Generation and Treatment of Paper Recycling Wastewater Using a Microbial Fuel Cell. Applied microbiology and biotechnology 80: 349-355. Hurwitz, H.D., and Dibiani, R. (2001) Investigation of Electrical Properties of Bipolar Membranes at Steady State and with Transient Methods. Electrochimica Acta 47: 759-773. Ikemoto, S., Suzuki, K., Kaneko, T., and Komagata, K. (1980) Characterization of Strains of Pseudomonas Maltophilia Which Do Not Require Methionine. International Journal of Systematic Bacteriology 30: 437-447. Jacques, R.J.S., Santos, E.C., Bento, F.M., Peralba, M.C.R., Selbach, P.A., Sa, E.L.S., and Camargo, F.A.O. (2005) Anthracene Biodegradation by Pseudomonas Sp. Isolated from a Petrochemical Sludge Landfarming Site. International Biodeterioration & Biodegradation 56: 143-150. Jang, J.K., Pham, T.H., Chang, I.S., Kang, K.H., Moon, H., Cho, K.S., and Kim, B.H. (2004) Construction and Operation of a Novel Mediator- and Membrane-Less Microbial Fuel Cell. Process Biochemistry 39: 1007-1012. Janssen, P.H. (1991) Isolation of Clostridium Propionicum Strain 19acry3 and Further Characteristics of the Species. Archives of Microbiology 155: 566-571. Jeremiasse, A.W., Hamelers, H.V.M., Saakes, M., and Buisman, C.J.N. (2010) Ni Foam Cathode Enables High Volumetric H2 Production in a Microbial Electrolysis Cell. International Journal of Hydrogen Energy 35: 12716-12723. Jiang, D., and Li, B. (2009) Granular Activated Carbon Single-Chamber Microbial Fuel Cells (Gac-Scmfcs): A Design Suitable for Large-Scale 131 Wastewater Treatment Processes. Biochemical Engineering Journal 47: 31-37. Jiang, J., and Kucernak, A. (2004) Investigations of Fuel Cell Reactions at the Composite Microelectrodesolid Polymer Electrolyte Interface. I. Hydrogen Oxidation at the Nanostructured PtnafionR Membrane Interface. Journal of Electroanalytical Chemistry 567: 123-137. Jiang, R., Huang, S., Chow, A.T., and Yang, J. (2009) Nitric Oxide Removal from Flue Gas with a Biotrickling Filter Using Pseudomonas Putida. Journal of Hazardous Materials 164: 432-441. Johri, S., Qazi, G.N., and Chopra, C.L. (1991) Evidence of Plasmid Mediated Dechlorinase Activity in Pseudomonas Sps. Journal of Biotechnology 20: 73-82. Jones, D.T., and Woods, D.R. (1986) Acetone-Butanol Fermentation Revisited. Microbiol Rev. 50. Jung, S., and Regan, J. (2007) Comparison of Anode Bacterial Communities and Performance in Microbial Fuel Cells with Different Electron Donors. Applied microbiology and biotechnology 77: 393-402. Kalathil, S., Lee, J., and Cho, M.H. (2011) Granular Activated Carbon Based Microbial Fuel Cell for Simultaneous Decolorization of Real Dye Wastewater and Electricity Generation. New Biotechnology In Press, Accepted Manuscript. Kapdan, I.K., and Kargi, F. (2006) Bio-Hydrogen Production from Waste Materials. Enzyme and Microbial Technology 38: 569-582. Kargi, F., and Eker, S. (2007) Electricity Generation with Simultaneous Wastewater Treatment by a Microbial Fuel Cell (Mfc) with Cu and Cu–Au Electrodes. Journal of Chemical Technology & Biotechnology 82: 658-662. Kiely, P., Call, D., Yates, M., Regan, J., and Logan, B. (2010a) Anodic Biofilms in Microbial Fuel Cells Harbor Low Numbers of 132 Higher-Power-Producing Bacteria Than Abundant Genera. Applied microbiology and biotechnology 88: 371-380. Kiely, P.D., Regan, J.M., and Logan, B.E. (2011a) The Electric Picnic: Synergistic Requirements for Exoelectrogenic Microbial Communities. Current Opinion in Biotechnology In Press, Corrected Proof. Kiely, P.D., Rader, G., Regan, J.M., and Logan, B.E. (2011b) Long-Term Cathode Performance and the Microbial Communities That Develop in Microbial Fuel Cells Fed Different Fermentation Endproducts. Bioresource Technology 102: 361-366. Kiely, P.D., Cusick, R., Call, D.F., Selembo, P.A., Regan, J.M., and Logan, B.E. (2010b) Anode Microbial Communities Produced by Changing from Microbial Fuel Cell to Microbial Electrolysis Cell Operation Using Two Different Wastewaters. Bioresource Technology In Press, Corrected Proof. Kiely, P.D., Cusick, R., Call, D.F., Selembo, P.A., Regan, J.M., and Logan, B.E. (2011c) Anode Microbial Communities Produced by Changing from Microbial Fuel Cell to Microbial Electrolysis Cell Operation Using Two Different Wastewaters. Bioresource Technology 102: 388-394. Kim, B., Chang, I., and Gadd, G. (2007a) Challenges in Microbial Fuel Cell Development and Operation. Applied microbiology and biotechnology 76: 485-494. Kim, B.H., Ikeda, T., Park, H.S., Kim, H.J., Hyun, M.S., Kano, K., Takagi, K., and Tatsumi, H. (1999b) Electrochemical Activity of an Fe(Iii)-Reducing Bacterium, Shewanella Putrefaciens Ir-1, in the Presence of Alternative Electron Acceptors. Biotechnology Techniques 13: 475-478. Kim, H.J., Hyun, M.S., Chang, I.S., and Kim, B.H. (1999c) A Microbial Fuel Cell Type Lactate Biosensor Using a Metal-Reducing Bacterium, Shewanella Putrefaciens. Microbiology and Biothchnology 9(3): 365-367. 133 Kim, H.J., Park, H.S., Hyun, M.S., Chang, I.S., Kim, M., and Kim, B.H. (2002) A Mediator-Less Microbial Fuel Cell Using a Metal Reducing Bacterium, Shewanella Putrefaciens. Enzyme and Microbial Technology 30: 145-152. Kim, I.S., Chae, K.-J., Choi, M.-J., and Verstraete, W. (2008a) Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation. Environ. Eng. Res. 13: 51~65. Kim, J.R., Min, B., and Logan, B.E. (2005) Evaluation of Procedures to Acclimate a Microbial Fuel Cell for Electricity Production. Applied microbiology and biotechnology 68(1): 23-30. Kim, J.R., Cheng, S., Oh, S.-E., and Logan, B.E. (2007b) Power Generation Using Different Cation, Anion, and Ultrafiltration Membranes in Microbial Fuel Cells. Environmental Science & Technology 41: 1004-1009. Kim, J.R., Jung, S.H., Regan, J.M., and Logan, B.E. (2007c) Electricity Generation and Microbial Community Analysis of Alcohol Powered Microbial Fuel Cells. Bioresource Technology 98: 2568-2577. Kim, J.R., Dec, J., Bruns, M.A., and Logan, B.E. (2008b) Removal of Odors from Swine Wastewater by Using Microbial Fuel Cells. Appl. Environ. Microbiol. 74: 2540-2543. Kishimoto, N., Kosako, Y., and Tano, T. (1991) An Acidophilic Chemoorganotrophic Bacterium Containing Menaquinone from Acidic Mineral Environment. Current Microbiology 22: 1-7. Kothari, R., Tyagi, V.V., and Pathak, A. (2010) Waste-to-Energy: A Way from Renewable Energy Sources to Sustainable Development. Renewable and Sustainable Energy Reviews 14: 3164-3170. Kwon, S.W., Kim, J.S., Park, I.C., Yoon, S.H., Park, D.H., Lim, C.K., and Go, S.J. (2003) Pseudomonas Koreensis Sp. Nov., Pseudomonas Umsongensis Sp. Nov. And Pseudomonas Jinjuensis Sp. Nov., Novel Species from Farm Soils in Korea. International Journal of Systematic 134 and Evolutionary Microbiology 53: 21-27. Lee, H.-S., and Rittmann, B.E. (2010) Significance of Biological Hydrogen Oxidation in a Continuous Single-Chamber Microbial Electrolysis Cell. Environmental Science & Technology 44: 948-954. Lee, H.-S., Vermaas, W.F.J., and Rittmann, B.E. (2010) Biological Hydrogen Production: Prospects and Challenges. Trends in Biotechnology 28: 262-271. Lee, H.-S., Torres, C.s.I., Parameswaran, P., and Rittmann, B.E. (2009) Fate of H2 in an Upflow Single-Chamber Microbial Electrolysis Cell Using a Metal-Catalyst-Free Cathode. Environmental Science & Technology 43: 7971-7976. Li, W.-W., Sheng, G.-P., Liu, X.-W., and Yu, H.-Q. (2011) Recent Advances in the Separators for Microbial Fuel Cells. Bioresource Technology 102: 244-252. Liu, G., Yates, M.D., Cheng, S., Call, D.F., Sun, D., and Logan, B.E. (2011) Examination of Microbial Fuel Cell Start-up Times with Domestic Wastewater and Additional Amendments. Bioresource Technology 102: 7301-7306. Liu, H., and Logan, B.E. (2004) Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environmental Science & Technology 38: 4040-4046. Liu, H., Ramnarayanan, R., and Logan, B.E. (2004a) Production of Electricity During Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environmental Science & Technology 38: 2281-2285. Liu, H., Cheng, S., and Logan, B.E. (2004b) Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell. Environmental Science & Technology 39: 658-662. Liu, H., Grot, S., and Logan, B.E. (2005a) Electrochemically Assisted 135 Microbial Production of Hydrogen from Acetate. Environmental Science & Technology 39: 4317-4320. Liu, H., Cheng, S., and Logan, B.E. (2005b) Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration. Environmental Science & Technology 39: 5488-5493. Liu, W.-z., Wang, A.-j., Ren, N.-q., Zhao, X.-y., Liu, L.-h., Yu, Z.-g., and Lee, D.-J. (2007) Electrochemically Assisted Biohydrogen Production from Acetate†. Energy & Fuels 22: 159-163. Liu, W., Wang, A., Cheng, S., Logan, B.E., Yu, H., Deng, Y., Nostrand, J.D.V., Wu, L., He, Z., and Zhou, J. (2010a) Geochip-Based Functional Gene Analysis of Anodophilic Communities in Microbial Electrolysis Cells under Different Operational Modes. Environmental Science & Technology 44: 7729-7735. Liu, Y., Harnisch, F., Fricke, K., Schroder, U., Climent, V., and Feliu, J.M. (2010b) The Study of Electrochemically Active Microbial Biofilms on Different Carbon-Based Anode Materials in Microbial Fuel Cells. Biosensors and Bioelectronics 25: 2167-2171. Lobo, S.A.L., Melo, A.M.P., Carita, J.N., Teixeira, M., and Saraiva, L.M. (2007) The Anaerobe Desulfovibrio Desulfuricans Atcc 27774 Grows at Nearly Atmospheric Oxygen Levels. FEBS letters 581: 433-436. Logan, B. (2008a) Microbial Fuels for the Future. Nature 454: 943-944. Logan, B., Cheng, S., Watson, V., and Estadt, G. (2007) Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells. Environmental Science & Technology 41: 3341-3346. Logan, B.E. (2004) Extracting Hydrogen and Energy from Renewable Resources. Environmental Science & Technology 38(9): 160A-167A. Logan, B.E., and Regan, J.M. (2006) Electricity-Producing Bacterial Communities in Microbial Fuel Cells. Trends in Microbiology 14: 136 512-518. Logan, B.E., Murano, C., Scott, K., Gray, N.D., and Head, I.M. (2005) Electricity Generation from Cysteine in a Microbial Fuel Cell. Water Research 39: 942-952. Logan, B.E., Call, D., Cheng, S., Hamelers, H.V.M., Sleutels, T.H.J.A., Jeremiasse, A.W., and Rozendal, R.A. (2008) Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter. Environmental Science & Technology 42(23): 8630-8640. Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., and Rabaey, K. (2006a) Microbial Fuel Cells: Methodology and Technology. Environmental Science & Technology 40: 5181-5192. Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., and Rabaey, K. (2006b) Microbial Fuel Cells: Methodology and Technology†. Environmental Science & Technology 40: 5181-5192. Lovley, D.R. (2006) Bug Juice: Harvesting Electricity with Microorganisms. Nature Reviews Microbiology 4: 497-508. Lovley, D.R. (2008) The Microbe Electric: Conversion of Organic Matter to Electricity. Current Opinion in Biotechnology 19: 564-571. Lower, S.K., Hochella, M.F., and Beveridge, T.J. (2001) Bacterial Recognition of Mineral Surfaces: Nanoscale Interactions between Shewanella and Α-Feooh. Science 292: 1360-1363. Lowy, D.A., and Tender, L.M. (2008) Harvesting Energy from the Marine Sediment-Water Interface: Iii. Kinetic Activity of Quinone- and Antimony-Based Anode Materials. Journal of Power Sources 185: 70-75. Lu, L., Xing, D., Xie, T., Ren, N., and Logan, B.E. (2010) Hydrogen Production from Proteins Via Electrohydrogenesis in Microbial Electrolysis Cells. 137 Biosensors and Bioelectronics 25: 2690-2695. Luo, H., Liu, G., Zhang, R., and Jin, S. (2009) Phenol Degradation in Microbial Fuel Cells. Chemical Engineering Journal 147: 259-264. Mansfeld, F. (2007) The Interaction of Bacteria and Metal Surf
摘要: 
工業科技帶動經濟繁榮,使得人類生活便利,而工業蓬勃發展基礎則建立於化石燃料之使用。然現今全球化石燃料貯藏量有限,人類大量使用將使其具短缺的危機,此外,燃燒化石燃料使得空氣中存有的二氧化碳濃度飆升,進而造成全球氣候變遷、生物體生存受到迫害等問題衍生。有鑑於此,同時解決能量需求與二氧化碳釋放問題將為一重大挑戰。氫氣被視為二十一世紀最潔淨之能源,可由生質物(biomass)經轉換取得,而利用生質能進行產氫之方式有許多種,但傳統暗醱酵產氫於代謝過程中產生的液態有機副產物因熱力學之限制,無法進一步地被轉換成氫氣,故氫能生產量有限。近年來,產氫研究發展新穎技術—微生物電解
電池—利用微生物代謝機制將有機物質及醱酵產物分解為二氧化碳,同時獲得較高純度之氫氣。
微生物電解電池(Microbial electrolysis cells, MECs)是指存在於陽極的微生物分解有機物的過程中產生質子(H+)、電子(e-),電子經由外部電路傳遞至陰極,質子則透過質子交換膜到達陰極;而厭氧狀態的陰極接收了電子與質子後因而生成氫氣。於此過程中需要額外提供電能( > 0.25 V)才得以使反應自發,獲得合理的電流密度與可用的氫氣產生速率。影響MECs 系統產氫效能之因素繁多,舉凡微生物來源(即污泥植種)、電極材質與面積、使用離子交換膜與否、反應槽結構與操作形態等因素相關,根據操作條件不同而影響MECs 系統產氫表現。本研究以不同污泥來源做為進料來源,評估微生物電解電池於不同操作基質濃度下之產氫效能,同時探討在各別操作條件下微生物族群變動情形對於該系統之影響,進而得到最佳產氫效能之操作條件。
以福田初沉污泥為污泥植種來源,外加電壓為0.7 V,無論MEC 系統操作在污泥有經MFC 馴養(乙酸)、提高基質(丁酸)濃度與連續MEC 批次操作(乙酸)之條件下,系統之電流密度與庫倫效率皆有上升之趨勢,但整體而言MEC 系統之產氫表現不佳,於氣相分析結果皆有觀察到甲烷氣體生成,推測系統存在會用掉氫氣之微生物(如乙酸生成菌與甲烷生成菌),致使氫氣一生成就立刻被用於其他用途上,而造成系統產氫表現不佳之主因。
由於污泥經MFC 馴養的過程較為耗時,故另以不同污泥來源(台灣中部河川-綠川底泥、台中中興大學-中興湖台灣島底泥、台中福田水資源回收中心初沉池污泥)進行MEC 批次實驗(污泥植種皆不經MFC 馴養),評估何者為較佳之污泥來源。以台灣中部河川-綠川底泥為較適宜之污泥來源,直接進行MEC批次實驗,系統效能與產氫表現較佳。

The industrialization movement brings up the world's economic growth for the past decades, and its progress was fundamentally promoted by the consumption of fossil fuels. However, fossil fuels could be run out for in a century or less, the energy demand will become a serious problem in the near future. Besides, the combustion of fossil fuels gave rise to carbon dioxide and other global-warming gas in the atmosphere which contributed to global climate change. The greatest environmental challenge is to simultaneously solve energy demand and to reduce CO2 releases.
Hydrogen is considered to be one of the clean energies in 21 century. Hydrogen can be produced from certain forms of biomass by biological fermentation methods using various organic substrates including bio-wastes, wastewaters, etc., but the hydrogen yields are relatively low. The soluble organic byproducts of fermentation (e.g. acetate, butyrate) require endothermic reactions to covert to hydrogen. Without adding external energy, these molecules couldn't further convert to hydrogen. Recently, microbial electrolysis cells (MECs) has been demonstrated to be a new promising technique for biological hydrogen production from bio-wastes by adding a small voltage to the circuit.
In an MEC, microbes oxidize organic matters, producing protons and electrons. The electrons travel through an external circuit and combine with protons migrating through the ion exchange membrane (usually is proton exchange membrane, PEM) to from hydrogen on cathode. In this process, we have to add a small voltage (for acetate, more than 0.25 V) to make the reaction spontaneous, then we will get a reasonable current density and usable hydrogen production rate.
In this study, two variables were taking into consideration, inoculums and substrates for testing the performance of lab-scale MECs. Hydrogen production and microbial community structures were analyzed for obtaining a better understanding of the system performance. Using the effluent of the primary clarifier of Fukuda reclaimed water recycling center in Taichung as inoculums, acetate or butyrate as its substrate, applied voltage were control at 0.7 V, the relatively good treatment efficiencies were obtained, but no hydrogen gas were detected. Furthermore, when different inoculums were tested in these MECs system to determine which microorganisms source was suitable for MEC performance. Applying inoculums from sediment of Green River in Taichung, acetate as its substrate, 0.7 V applied voltage, hydrogen production was observed. In that MEC batch experiment, better treatment efficiency, the higher current density output and coulombic efficiency were observed.
URI: http://hdl.handle.net/11455/5073
其他識別: U0005-2607201116523500
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.