Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5086
標題: 高高屏地區高臭氧污染來源解析及成因探討
A Study on High Ozone Pollution Sources and Influence Factors in Kaohsiung and Pingtung Area
作者: 許峻銘
Hsu, Chun-Ming
關鍵字: ozone;臭氧;volatile organic compounds;ozone formation potential;ANOVA;principle component analysis;揮發性有機物;臭氧生成潛勢;變異數分析;主成份分析
出版社: 環境工程學系所
引用: Atkinson, R., “Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds”, Journal of Physical and Chemical Reference Data, Monograph, Vol. 1, pp. 1-246 (1989). Atkinson, R., “Gas-phase tropospheric chemistry organic compounds: a review”, Atmospheric Environment, Vol. 24, pp. 1-41 (1990). Atkinson, R., “Atmospheric chemistry of VOCs and NOx”, Atmospheric Environment, Vol. 34, pp. 2063-2101 (2000). Bronnimann, S., and Neu U., “Weekend-weekday Differences of Near-surface Ozone Concentrations in Switzerland for Different Meteorological Conditions”, Atmospheric Environment, Vol.31 pp.1127-1135 (1999). Blanchard, C. L., F. David, “Spatial mapping of VOC and NOx - limitation of ozone formation in central California”, Atmospheric Environment, Vol. 35, pp. 3861-3873 (2001). Borbon, A., N. Locoge, M. Veillerot, J. C. Galloo, R. Guillermo, “Characterisation of NMHCs in a French urban atmosphere: overview of the main sources”, The Science of the Total Environment, Vol. 292, pp. 177-191 (2002). Carter, W. P. L., R. Atkinson, “An Experimental Study of Incremental Hydrocarbon Reactivity”, Environmental Science Technology, Vol. 21, pp. 670-679 (1987). Carter, W. P. L., “Development of Ozone Reactivity Scales For Volatile Organic Compounds ”, Air & Waste Management Association, Vol. 45, pp. 881-899 (1994). Chan, C. Y., and Chan L. Y., “Effect of meteorology and air pollutant transport on ozone episodes at a subtropical coastal Asian city, Hong Kong”, Journal of geophysical research, Vol. 105, pp. 20,707-20,724 (2000). Chang, C. C., J. L. Wang, S. C. Liu, S. C. C. Lung, “Source determination of light non-methane hydrocarbons by simultaneous multi-site sampling in a metropolitan area” , Chemosphere-Global Change Science, Vol. 2, pp. 11-22 (2000). Chang S. C., and Lee C. T., “Ozone variations through vehicle emissions reductions based on air quality monitoring data in Taipei City, Taiwan , from 1994 to 2003”, Atmospheric Environment,Vol.40, pp. 3513-3526 (2006). Chu N., Kadane J. B., and Davidson C. I., “ Identifying Likely PM2.5 Source on Days of Elevated Concentration:A Simple Statistical Approach”, Environ. Sci. Technol. Vol.43, pp. 2407-2411 (2009). Flemming J., Stern R., and Yamartino R. J., “A new quality regime classification scheme for O3, NO2, SO2 and PM10 observations sites”, Atmospheric Environment, Vol.39, pp. 6121-6129 (2005). Grant R. H., and Wong K. L., “Ozone profiles over a suburban neighborhood”, Atmospheric Environment, Vol.33, pp.51-63 (1999). Guo H., and Wang T., “Source contribution to ambient VOCs and CO at a rural site in eastern China”, Atmospheric Environment, Vol.38, pp. 4551-4560 (2004). Gao H. O., “Day of week effects on diurnal ozone/NOx cycles and transportation emission in Southern Califoria”, Transportation Research, Vol.12, Part D, pp.292-305 (2007). Hsieh, C. C., K. H. Chang, Y. S. Kao, “Estimating the ozone formation potential of volatile aromatic compounds in vehicle tunnels ”, Chemosphere, Vol. 39, pp. 1433-1444 (1999). Khoder, M. I., “Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo ” , Atmospheric Environment, Vol. 41, pp. 554-566 (2007). Lau, J., W.T. Hung, C. S. Cheung, “Interpretation of air quality in relation to monitoring station’s surroundings”, Atmospheric Environment, Vol. 43, pp. 769-777 (2009). Nicholas C. W.,“Case study of the late July 2005 ground-Level ozone episode in North Carolina ”, Eighth Conference on Atmospheric Chemistry (2006). Russel, A., Milford, J., M. S. Bergin, S. Mcbride, L. McNair, Y. Yang, W. R. Stockwell, Croes, B., “Urban ozone control and atmospheric reactivity of organic gases”, Science , Vol. 269, pp. 491-495 (1995). Tang J.H., L.Y. Chen, C.Y. Chan, Y.S. Li, C.C. Chang, S.C. Liu, D. Wu, Y.D. Li, “Characteristics and diurnal variations of NMHCs at urban, suburban, and rural sites in the Pearl River Delta and a remote site in South Chin” , Atmospheric Environment, Vol. 41, pp. 8620-8632 (2007). Wang, J. L., W. H. Ding, T. Y. Chen, “Source determination of light non-methane hydrocarbons by simultaneous multi-site sampling in a metropolitan area”, Chemosphere-Global Change Science 2, Vol. 2, pp. 11-22 (2000). 張能復、曹志宏,「以光化學反應性軌跡模式探討MIR指標應用於台灣臭氧前驅物排放減量的效果」,第十五屆空氣污染控制技術研討會,國立台灣大學環境工程系,1998。 林志仁、蔡俊鴻、吳明泰、張能復,「高屏地區大氣揮發性有機物成分特徵與臭氧生成潛勢關聯性研究」,第十五屆空氣污染控制技術研討會,國立台灣大學環境工程系,1998。 白玨玲,「中部地區臭氧濃度特徵與天氣型態相關探討」,碩士論文,東海大學環境科學系,1998。 梁正中、吳曉妮、王明皓、陳木麟,「都會區碳氫化合物特性與移動性污染源之關聯性初探」,第十八屆空氣污染控制技術研討會,逢甲大學環境工程系,2000。 程萬里、黃超群、郭冠廷,「中部地區海陸風環流與高臭氧污染之相關分析」,東海科學第三卷:57-80,2001。 吳立言,「高雄地區固定源揮發性有機物指紋及光化反應潛勢之探討」,碩士論文,國立中山大學環境工程研究所,2002。 潘慧芳,「中部空氣品質區空氣品質之時空分佈特性分析」,碩士論文,國立中興大學環境工程系,2004。 倪國敦,「高高屏地區臭氧趨勢分析與氣象因子相關性探討」,碩士論文,國立中山大學環境工程研究所,2004。 楊峰杰,「以因子分析探討高雄市大氣中揮發性有機物之類別與來源」,碩士論文,國立中山大學環境工程研究所,2005。 林宜穎,「颱風或熱帶低壓與中部空品區空氣品質之相關探討」,碩士論文,國立中央大學大氣物理所,2006。 王振興,薛威震,「高雄縣市地區空氣中有機光化物調查」,環境分析化學研討會,行政院環保署環境檢驗所第二組,2006。 陳聖博,「以光化學網格模式評估不同季節臭氧事件日之排放源與風場輸入資料差異」碩士論文,國立中興大學環境工程系,2006。 陳康興,李翰杰,陳家修,王文正,王信凱,彭彥彬,「高高屏地區主要空氣污染物經氣象因子校正後之長期趨勢變化研究」,第十九屆環境工程年會,國立中山大學環境工程所,2007。 蕭輔漢,「南投地區臭氧污染特性與成因探討」,碩士論文,國立中興大學環境工程系,2008。 呂培農,「中部空氣品質區高臭氧污染來源之解析」,碩士論文,國立中興大學環境工程系,2009。 林泱瑜,陳淨修,蔡俊鴻,「高屏空品區臭氧事件日特徵與揮發性有機物光化反應潛勢相關性分析」,第二十一屆環境工程年會,國立成功大學環境工程系,2009。 吳鴻澤,「高高屏空品區臭氧與非甲烷碳氫化合物特性之探討」,碩士論文,國立中興大學環境工程系,2010。 陳順宇,「多變量分析,第四版」,華泰文化,2005。 陳正昌,程炳林,陳新豐、劉子鍵,「多變量分析方法–統計軟體應用,第五版」,五南圖書出版有限公司,2009。 陳景祥,「R軟體:應用統計方法,初版」,東華書局,2010。 行政院環境保護署空氣品質監測網 http://taqm.epa.gov.tw/taqm/zh-tw/PsiAreaHourly.aspx
摘要: 
高高屏地區為石化工業與重工業主要發展地區,因此高高屏地區為全台灣空氣污染最嚴重的區域,其中臭氧污染比例逐漸增高,故本研究針對造成高臭氧之揮發性有機物來源進行解析以及探討氣象因子之影響。所使用之資料來源為環保署在高高屏地區所設置之一般空氣品質測站以及光化測站之空氣品質監測資料。

首先將研究區域內測站依臭氧污染特性進行分區,結果可將其分為北高雄區以及南高屏區,其中南高屏區的臭氧污染情形較北高雄區嚴重。分析各分區內測站氣象因子與臭氧濃度之關係,結果顯示風速較高時(約為2-4 m/s)、氣溫較高時 (約為28-30 ℃) 、風向為西風系列即白天高高屏地區盛行海風時、相對濕度較低時(約為50-60 %)、紫外線指數較高時(約為4-6 UVI),臭氧濃度較容易大於120 ppb。臭氧濃度與揮發性有機物濃度主成份分析結果顯示,各站主要影響臭氧生成之因子首先為石化產業排放,其次為化工有機溶劑,然後為汽機車排放與植物排放。臭氧污染事件日與非事件日分析結果亦顯示當風速與氣溫逐漸上升時,相對濕度與各種揮發性有機物濃度逐漸降低時,臭氧濃度會逐漸上升。由各站臭氧濃度與各項影響因子之多元迴歸分析結果顯示在橋頭站若能降低甲苯、乙苯及1,2,4-三甲基苯之濃度、在小港站若能降低甲苯、鄰-二甲苯及1,2,4-三甲基苯之濃度、在潮州站若能降低乙烯、異戊烷、鄰-二甲苯及甲苯之濃度,將能有效控制臭氧濃度升高。

Petrochemical industry and heavy industry are major development in Kaohsiung and Pingtung area where suffer serious air pollution. Ozone pollution proportion is getting higher, so this research is study of volatile organic compounds sources which cause high ozone concentration and to explore the impact of meteorological factors. The source of research data in this study is from the air quality monitoring stations and photochemical assessment monitoring stations (PAMs) in Kaohsiung and Pingtung area.

First step is to divided the study area according to ozone pollution characteristics. The results can be divided into northern Kaohsiung area and southern Kaohsiung-Pingtung area. It's showed that the ozone concentration of southern Kaohsiung-Pingtung area is higher than northern Kaohsiung area. Analysis the relationship between ozone concentration and meteorological factors of each districts showed that when higher wind speed (about 2-4 m/s), higher temperature (about 28-30 ℃), wind from the west series that the mainly daytime wind in Kaohsiung and Pingtung area is sea wind, lower relative humidity (about 50-60 %), and higher UV index (about 4-6 UVI), ozone concentration is easily higher than 120 ppb. The principal component analysis of ozone concentration and the concentration of volatile organic compounds showed that the first factor of affecting ozone formation is petrochemical industry emissions, followed by chemical organic solvent, and then mobile emissions and plant emissions. Compared of ozone pollution event and non-event day showed that when the wind speed and temperature gradually increased; relative humidity and concentration of volatile organic compounds gradually decreased, the ozone concentration will be gradually increased. The multiple regression analysis of ozone concentration and its impact factors showed that if we can reduce the concentration of toluene, ethylbenzene, and 1,2,4-trimethylbenzene in Ciaotou station; the concentration of benzene, o-xylene and 1,2,4-trimethylbenzene in Hsiaokang station; the concentration of ethylene, iso-pentane and o-xylene in Chaozhou station, it can effectively control the ozone concentration to get higher.
URI: http://hdl.handle.net/11455/5086
其他識別: U0005-2801201215094500
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.