Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5088
標題: 觸媒氣化生質物產氫之研究
Biomass catalytic gasification for hydrogen production
作者: 陳欣宜
Chen, Hsin-Yi
關鍵字: 氣化;gasification;產氫;生物質;溫度;空氣等值比;觸媒;二次室觸媒;hydrogen production;biomass;temperatures;equivalence ratios;catalyst;secondary catalytic reaction.
出版社: 環境工程學系所
引用: 參考文獻 吳耿東 (2004). "生質能源-化腐朽為能源." 科學發展 383: 20-27. 呂玲儀 (2007). 多元醇法製備CuCo/Al2O3雙金屬觸媒對去除揮發性有機物之研究. 環境工程學系所. 台中市, 中興大學. 碩士. 呂錫民 (2009). "氣化技術." 科學發展 435: 62-66. 李定粵 (1991). 觸媒的原理與應用, 國立編譯館. 柯賢文 (2006). "未來的氫能經濟." 科學發展 399: 68-75. 徐恆文. (2004). "煤炭氣化發電之能源優勢." from http://emis.erl.itri.org.tw/index.asp. 張嘉修 (2009). "生質氫能." 科學發展 433: 32-35. 陳俊龍 (1995). "AES / ESCA 表面分析技術於工業材料上的應用." 工業材料 106: 69-77. 陳軍 (2004). 新能源材料, 五南圖書出版股份有限公司. 陳庭悅 (2006). "製氫觸媒介紹." 化工 53: 3-19. 經濟部能源局 (2009). 再生能源條例. 經濟部能源局. 經濟部能源局 (2010). 2010年能源產業技術白皮書, 經濟部能源局. 劉光宇 (2006). 氣固式流體化床過濾粒狀污染物的動態變化與影響參數之研究. 環境工程學系所. 台中市, 中興大學. 博士. 錢建嵩 (2010). "流體化床焚化爐與戴奧辛控制." 450: 12-19. 謝泰慶 (2006). 水氣轉移反應產生氫氣之實驗探討. 環境工程與科學系碩士班. 高雄縣, 輔英科技大學. 碩士. Abu El-Rub, Z., E. A. Bramer and G. Brem (2004). "Review of Catalysts for Tar Elimination in Biomass Gasification Processes." Industrial & Engineering Chemistry Research 43(22): 6911-6919. Alauddin, Z. A. B. Z., P. Lahijani, M. Mohammadi and A. R. Mohamed (2010). "Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review." Renewable and Sustainable Energy Reviews 14(9): 2852-2862. Armor, J. N. (1998). "Applications of catalytic inorganic membrane reactors to refinery products." Journal of Membrane Science 147(2): 217-233. Asadullah, M., K. Fujimoto and K. Tomishige (2001). "Catalytic Performance of Rh/CeO2 in the Gasification of Cellulose to Synthesis Gas at Low Temperature." Industrial & Engineering Chemistry Research 40(25): 5894-5900. Asadullah, M., S.-i. Ito, K. Kunimori, M. Yamada and K. Tomishige (2002). "Energy Efficient Production of Hydrogen and Syngas from Biomass:  Development of Low-Temperature Catalytic Process for Cellulose Gasification." Environmental Science & Technology 36(20): 4476-4481. Ashok, J., S. Naveen Kumar, A. Venugopal, V. Durga Kumari and M. Subrahmanyam (2007). "COX-free H2 production via catalytic decomposition of CH4 over Ni supported on zeolite catalysts." Journal of Power Sources 164(2): 809-814. Azhar Uddin, M., H. Tsuda, S. Wu and E. Sasaoka (2008). "Catalytic decomposition of biomass tars with iron oxide catalysts." Fuel 87(4-5): 451-459. Balat, M., H. Balat and C.
摘要: 
本研究利用兩階段流體化觸媒床探討生質物氣化產氫之最佳條件。主要探討流體化床中生質材料及操作參數對氣化產氫之影響,並評估二次室觸媒反應對產氫效率之影響。由熱重分析儀分析結果顯示生質物之反應溫度約為300-900 ℃,且其反應性之順序為木屑優於稻殼。不同氣化溫度(300-800 ℃)對產物組成影響,發現木屑約於660 ℃時達到最大產氣量,儘管進一步提升溫度(800 ℃),氫氣產量亦會提升,但過高溫度會造成產氫成本提高。於不同空氣等值比(ER),結果顯示愈低之ER值氧化反應愈少,而使其H2含量越高,CO2則反之。空氣等值比為0.62時,除符合一般實場上使用空氣作為氣化劑的反應條件且與其它空氣等值比(非純氮裂解)相較0.62擁有最高之氫氣選擇率。於一次室添加不同含浸量觸媒對產氫率之影響,結果顯示15FeCaO觸媒之產氫率最高。當鐵金屬添加量增加至20%時,Ca2Fe2O5會覆蓋氧化鈣觸媒,而使氧化鈣活性基位減少,因而減少氣體產生。
不同一次室氣化操作條件所產生之合成氣經由二次室7Ni2Cu/Al2O3觸媒催化反應,結果顯示明顯地增加氫氣提升率:5.8 ~91.7 %。觸媒添加於一次室及二次室對氣化生質物於660 oC之成效,結果顯示觸媒添加於一次室流體化床可提升焦油比例,二次室觸媒反應可更進一步將焦油進行催化重組反應而提升氫氣含量。此外,上述之程序比高溫800 oC之氫氣提升率更高且其具有良好之BTEX汙染物去除效率。

The study of biomass gasification by a two-stage catalytic fluidized bed reactor was performed for the optimal condition of hydrogen production.The effects of biomass and operating condition on the component of syngas were investgated, and the influence of secondary catalytic reaction on the production of hydrogen (H2) content was evaluated. The TGA (thermal gravimetric analysis) results showed the reaction temperatures of sawdust and rice husk were all in the range of 300-900 oC. Results also indicate that Sawdust is more reactive than rice husk.
From the results of operating temperatures, the syngas composed of rich hydrogen content initiated around 660 oC. With increasing temperatures, the hydrogen content of syngas slightly increased. However, it is more economic to produce hydrogen from fluidized bed biomass gasification at 660 oC than that operated at 800 oC. The results of equivalence ratios (ER) indicated that lower ER value show lower oxidation reaction. It led higher hydrogen content and lower carbon dioxide. 0.62 ER value is not only corresponded with the reaction condition used air as gasifying agents in the industry, but also had high hydrogen selectivity.
Hydrogen content in the syngas from fluidized bed biomass gasification was significantly promoted by addition of 15FeCaO catalyst. With the increase of Fe ration up to 20%, the Ca2Fe2O5 overspread on the support and thus the reactive site of CaO decreased, reducing the amount of gas products.
The syngas produced from fluidized bed biomass gasification was promoted by secondary reaction with the assistance of 7Ni2Cu/Al2O3 catalyst. The efficiencies of secondary catalytic reaction raising the H2 production yeilds were in the range 5.8-91.7%, depending on the component of syngas from fluidized bed biomass gasification.
The efficiencies of biomass catalytic gasification at 660oC and combinations of secondary catalytic reaction were evaluated. The results showed primary reactor with catalysts addition increased tar content and then secondary catalytic reaction further promoted H2 amount via catalytic reforming of tar. In addition, the catalytic reactor operated at 660 oC had better H2 production yield than only biomass gasification at 800 oC and higher BTEX (benzene, toluene, ethyl benzene, and the xylene) conversion efficiency than tranditional process.
URI: http://hdl.handle.net/11455/5088
其他識別: U0005-2806201121022100
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.