Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5090
標題: 擔體結構對碳分子篩選薄膜氣體滲透特性之影響
Effect the structure of supported layer of carbon molecular sieve membranes for gas separation
作者: 徐珮庭
Hsu, Pei-Ting
關鍵字: Gas separation;氣體分離;Carbon molecular sieving membrane;alumina support;sintering treatment;surface roughness;碳分子篩薄膜;氧化鋁擔體;燒結處理;表面粗糙度
出版社: 環境工程學系所
引用: 1. Lu, G.Q., J.C. Diniz da Costa, M. Duke, S. Giessler, R. Socolow, R.H. Williams, and T. Kreutz, Inorganic membranes for hydrogen production and purification: A critical review and perspective. Journal of Colloid and Interface Science, 2007. 314(2): p. 589-603. 2. Yang, R.T., Gas separation by adsorption processes. 1986. Medium: X; Size: Pages: 352. 3. Takht Ravanchi, M., T. Kaghazchi, and A. Kargari, Application of membrane separation processes in petrochemical industry: a review. Desalination, 2009. 235(1-3): p. 199-244. 4. Hamad, F., K.C. Khulbe, and T. Matsuura, Comparison of gas separation performance and morphology of homogeneous and composite PPO membranes. Journal of Membrane Science, 2005. 256(1-2): p. 29-37. 5. Rezac, M.E. and W.J. Koros, Preparation of polymer-ceramic composite membranes with thin defect-free separating layers. Journal of Applied Polymer Science, 1992. 46(11): p. 1927-1938. 6. Bernardo, P., E. Drioli, and G. Golemme, Membrane Gas Separation: A Review/State of the Art. Industrial & Engineering Chemistry Research, 2009. 48(10): p. 4638-4663. 7. Dautzenberg, F.M. and M. Mukherjee, Process intensification using multifunctional reactors. Chemical Engineering Science, 2001. 56(2): p. 251-267. 8. Chung, T.-S., L.Y. Jiang, Y. Li, and S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 2007. 32(4): p. 483-507. 9. Ulbricht, M., Advanced functional polymer membranes. Polymer, 2006. 47(7): p. 2217-2262. 10. Shao, L., B.T. Low, T.-S. Chung, and A.R. Greenberg, Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. Journal of Membrane Science, 2009. 327(1-2): p. 18-31. 11. Gilron, J. and A. Soffer, Knudsen diffusion in microporous carbon membranes with molecular sieving character. Journal of Membrane Science, 2002. 209(2): p. 339-352. 12. Hagg, M.B., J.A. Lie, and A. Lindbrathen, Carbon molecular sieve membranes - A promising alternative for selected industrial applications. Advanced Membrane Technology, 2003. 984: p. 329-345. 13. Mulder, M., Basic Principles of Membrane Technology. 1996, Kluwer Acadenic Publoshers. 14. HÄGg, M.-B., J.A. Lie, and A. LindbrÅThen, Carbon Molecular Sieve Membranes. Annals of the New York Academy of Sciences, 2003. 984(1): p. 329-345. 15. Domínguez-Domínguez, S., A. Berenguer-Murcia, E. Morallón, A. Linares-Solano, and D. Cazorla-Amorós, Zeolite LTA/carbon membranes for air separation. Microporous and Mesoporous Materials, 2008. 115(1-2): p. 51-60. 16. Yin, X., J. Wang, N. Chu, J. Yang, J. Lu, Y. Zhang, and D. Yin, Zeolite L/carbon nanocomposite membranes on the porous alumina tubes and their gas separation properties. Journal of Membrane Science, 2010. 348(1-2): p. 181-189. 17. Zeng, C., L. Zhang, X. Cheng, H. Wang, and N. Xu, Preparation and gas permeation of nano-sized zeolite NaA-filled carbon membranes. Separation and Purification Technology, 2008. 63(3): p. 628-633. 18. Rao, P.S., M.-Y. Wey, H.-H. Tseng, I.A. Kumar, and T.-H. Weng, A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Microporous and Mesoporous Materials, 2008. 113(1-3): p. 499-510. 19. Tseng, H.-H., I.A. Kumar, T.-H. Weng, C.-Y. Lu, and M.-Y. Wey, Preparation and characterization of carbon molecular sieve membranes for gas separation--the effect of incorporated multi-wall carbon nanotubes. Desalination, 2009. 240(1-3): p. 40-45. 20. Han, S.H., G.W. Kim, C.H. Jung, and Y.M. Lee, Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials. Desalination, 2008. 233(1-3): p. 88-95. 21. R.E. Kesting, A.K.F., POLYMERIC GAS SEPARATION MEMBRANES: JOHN WILLY & SONS, INC. 22. Rutherford, S.W. and D.D. Do, Review of time lag permeation technique as a method for characterisation of porous media and membranes. Adsorption, 1997. 3(4): p. 283-312. 23. Duan, S., F.A. Chowdhury, T. Kai, S. Kazama, and Y. Fujioka, PAMAM dendrimer composite membrane for CO2 separation: addition of hyaluronic acid in gutter layer and application of novel hydroxyl PAMAM dendrimer. Desalination, 2008. 234(1-3): p. 278-285. 24. Ismail, A.F. and L.I.B. David, A review on the latest development of carbon membranes for gas separation. Journal of Membrane Science, 2001. 193(1): p. 1-18. 25. Zhang, K. and J.D. Way, Optimizing the synthesis of composite polyvinylidene dichloride-based selective surface flow carbon membranes for gas separation. Journal of Membrane Science, 2011. 369(1-2): p. 243-249. 26. Fuertes, A.B. and T.A. Centeno, Preparation of supported asymmetric carbon molecular sieve membranes. Journal of Membrane Science, 1998. 144(1-2): p. 105-111. 27. Wei, W., G. Qin, H. Hu, L. You, and G. Chen, Preparation of supported carbon molecular sieve membrane from novolac phenol-formaldehyde resin. Journal of Membrane Science, 2007. 303(1-2): p. 80-85. 28. Kyotani, T., Control of pore structure in carbon. Carbon, 2000. 38(2): p. 269-286. 29. Kiyono, M., P.J. Williams, and W.J. Koros, Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes. Journal of Membrane Science, 2010. 359(1-2): p. 2-10. 30. Foley, H.C., Carbogenic molecular sieves: synthesis, properties and applications. Microporous Materials, 1995. 4(6): p. 407-433. 31. Ismail, A.F., K. Li, M. Reyes, and M. Miguel, From Polymeric Precursors to Hollow Fiber Carbon and Ceramic Membranes, in Membrane Science and Technology. 2008, Elsevier. p. 81-119. 32. Saufi, S.M. and A.F. Ismail, Fabrication of carbon membranes for gas separation--a review. Carbon, 2004. 42(2): p. 241-259. 33. Yang, H., Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, and I. Wright, Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences, 2008. 20(1): p. 14-27. 34. Liang, C., G. Sha, and S. Guo, Carbon membrane for gas separation derived from coal tar pitch. Carbon, 1999. 37(9): p. 1391-1397. 35. Liu, S., T. Wang, Q. Liu, S. Zhang, Z. Zhao, and C. Liang, Gas Permeation Properties of Carbon Molecular Sieve Membranes Derived from Novel Poly(phthalazinone ether sulfone ketone). Industrial & Engineering Chemistry Research, 2008. 47(3): p. 876-880. 36. Tin, P., T. Chung, Y. Liu, and R. Wang, Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide. Carbon, 2004. 42(15): p. 3123-3131. 37. Sedigh, M.G., M. Jahangiri, P.K.T. Liu, M. Sahimi, and T.T. Tsotsis, Structural characterization of polyetherimide-based carbon molecular sieve membranes. Aiche Journal, 2000. 46(11): p. 2245-2255. 38. Saufi, S.M.a.I., A.F., Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Membrane Science &Technique, 2002. 24: p. 843-854. 39. Centeno, T.A., J.L. Vilas, and A.B. Fuertes, Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation. Journal of Membrane Science, 2004. 228(1): p. 45-54. 40. Zhou, W., M. Yoshino, H. Kita, and K.-i. Okamoto, Preparation and gas permeation properties of carbon molecular sieve membranes based on sulfonated phenolic resin. Journal of Membrane Science, 2003. 217(1-2): p. 55-67. 41. Song, C., T. Wang, H. Jiang, X. Wang, Y. Cao, and J. Qiu, Gas separation performance of C/CMS membranes derived from poly(furfuryl alcohol) (PFA) with different chemical structure. Journal of Membrane Science, 2010. 361(1-2): p. 22-27. 42. Lee, H., H. Suda, and K. Haraya, Characterization of the post-oxidized carbon membranes derived from poly(2,4-dimethyl-1,4-phenylene oxide) and their gas permeation properties. Separation and Purification Technology, 2008. 59(2): p. 190-196. 43. Campo, M.C., F.D. Magalhães, and A. Mendes, Carbon molecular sieve membranes from cellophane paper. Journal of Membrane Science, 2010. 350(1-2): p. 180-188. 44. Jung C. H. , K.G.W., Han S. H., Lee Y. M. , Gas Separation of Pyrolyzed Polymeric Membranes:Effect of Polymer Precursor and Pyrolysis Conditions. Macromolecular Research, 2007. 15(6): p. 565-574. 45. Kiyono, M., P.J. Williams, and W.J. Koros, Effect of polymer precursors on carbon molecular sieve structure and separation performance properties. Carbon, 2010. 48(15): p. 4432-4441. 46. Kusuki, Y., H. Shimazaki, N. Tanihara, S. Nakanishi, and T. Yoshinaga, Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. Journal of Membrane Science, 1997. 134(2): p. 245-253. 47. Jiang, L.Y., T.S. Chung, and S. Kulprathipanja, An investigation to revitalize the separation performance of hollow fibers with a thin mixed matrix composite skin for gas separation. Journal of Membrane Science, 2006. 276(1-2): p. 113-125. 48. Birg Tantekin-Ersolmaz, S., L. Senorkyan, N. Kalaonra, M. TatlIer, and A. Erdem-Senatalar, n-Pentane/i-pentane separation by using zeolite-PDMS mixed matrix membranes. Journal of Membrane Science, 2001. 189(1): p. 59-67. 49. Kim, S., L. Chen, J.K. Johnson, and E. Marand, Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment. Journal of Membrane Science, 2007. 294(1-2): p. 147-158. 50. Hinds, B.J., N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L.G. Bachas, Aligned Multiwalled Carbon Nanotube Membranes. Science, 2004. 303(5654): p. 62-65. 51. Qiu, S., L. Wu, X. Pan, L. Zhang, H. Chen, and C. Gao, Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes. Journal of Membrane Science, 2009. 342(1-2): p. 165-172. 52. Mahajan, R., R. Burns, M. Schaeffer, and W.J. Koros, Challenges in forming successful mixed matrix membranes with rigid polymeric materials. 2002, Wiley Subscription Services, Inc., A Wiley Company. p. 881-890. 53. Duval, J.M., A.J.B. Kemperman, B. Folkers, M.H.V. Mulder, G. Desgrandchamps, and C.A. Smolders, Preparation of zeolite filled glassy polymer membranes. 1994, Wiley Subscription Services, Inc., A Wiley Company. p. 409-418. 54. Yoshida, W. and Y. Cohen, Ceramic-supported polymer membranes for pervaporation of binary organic/organic mixtures. Journal of Membrane Science, 2003. 213(1-2): p. 145-157. 55. Beuscher, U. and C. H. Gooding, The influence of the porous support layer of composite membranes on the separation of binary gas mixtures. Journal of Membrane Science, 1999. 152(1): p. 99-116. 56. Ding, X., Y. Cao, H. Zhao, L. Wang, and Q. Yuan, Fabrication of high performance Matrimid/polysulfone dual-layer hollow fiber membranes for O2/N2 separation. Journal of Membrane Science, 2008. 323(2): p. 352-361. 57. Anderson, C.J., S.J. Pas, G. Arora, S.E. Kentish, A.J. Hill, S.I. Sandler, and G.W. Stevens, Effect of pyrolysis temperature and operating temperature on the performance of nanoporous carbon membranes. Journal of Membrane Science, 2008. 322(1): p. 19-27. 58. Sadrzadeh, M., M. Amirilargani, K. Shahidi, and T. Mohammadi, Gas permeation through a synthesized composite PDMS/PES membrane. Journal of Membrane Science, 2009. 342(1-2): p. 236-250. 59. Lee, H.-J., M. Yoshimune, H. Suda, and K. Haraya, Gas permeation properties of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) derived carbon membranes prepared on a tubular ceramic support. Journal of Membrane Science, 2006. 279(1-2): p. 372-379. 60. van der Haar, L.M. and H. Verweij, Homogeneous porous perovskite supports for thin dense oxygen separation membranes. Journal of Membrane Science, 2000. 180(1): p. 147-155. 61. Weng, T.-H., H.-H. Tseng, and M.-Y. Wey, Fabrication and characterization of poly(phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation. International Journal of Hydrogen Energy, 2010. 35(13): p. 6971-6983. 62. Wei, W., S. Xia, G. Liu, X. Gu, W. Jin, and N. Xu, Interfacial adhesion between polymer separation layer and ceramic support for composite membrane. AIChE Journal. 56(6): p. 1584-1592. 63. Huber, F., J. Springer, and M. Muhler, Plasma polymer membranes from hexafluoroethane/hydrogen mixtures for separation of oxygen and nitrogen. 1997, John Wiley & Sons, Inc. p. 1517-1526. 64. Kimmerle, K., T. Hofmann, and H. Strathmann, Analysis of gas permeation through composite membranes. Journal of Membrane Science, 1991. 61: p. 1-17. 65. 王一峰, α-Al2O3微粉燒結行為的觀察, 資源工程學系. 2002, 國立成功大學. 66. Levänen, E. and T. Mäntylä, Effect of sintering temperature on functional properties of alumina membranes. Journal of the European Ceramic Society, 2002. 22(5): p. 613-623. 67. Centeno, T.A. and A.B. Fuertes, Supported carbon molecular sieve membranes based on a phenolic resin. Journal of Membrane Science, 1999. 160(2): p. 201-211. 68. Rao, M.B. and S. Sircar, Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. Journal of Membrane Science, 1993. 85(3): p. 253-264. 69. Suda, H. and K. Haraya, Carbon Molecular Sieve Membranes: Preparation, Characterization, and Gas Permeation Properties, in Membrane Formation and Modification. 1999, American Chemical Society. p. 295-313. 70. Strano, M.S. and H.C. Foley, Deconvolution of permeance in supported nanoporous membranes. Aiche Journal, 2000. 46(3): p. 651-658. 71. Zhang, L., G. He, W. Zhao, M. Tan, and X. Li, Effect of formamide additive on the structure and gas permeation performance of polyethermide membrane. Separation and Purification Technology, 2010. 73(2): p. 188-193. 72. Barbosa-Coutinho, E., V.M.M. Salim, and C. Piacsek Borges, Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon, 2003. 41(9): p. 1707-1714. 73. Fuertes, A.B. and T.A. Centeno, Carbon molecular sieve membranes from polyetherimide. Microporous and Mesoporous Materials, 1998. 26(1-3): p. 23-26. 74. Zhang, B., T. Wang, Y. Wu, Q. Liu, S. Liu, S. Zhang, and J. Qiu, Preparation and gas permeation of composite carbon membranes from poly(phthalazinone ether sulfone ketone). Separation and Purification Technology, 2008. 60(3): p. 259-263. 75. Zhang, B., T. Wang, S. Zhang, J. Qiu, and X. Jian, Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone). Carbon, 2006. 44(13): p. 2764-2769. 76. 翁子翔, 高分子薄膜與多層複合薄膜氣體分離特性之研究, 環境工程學系. 2010, 國立中興大學.
摘要: 
應用薄膜技術於工業程序中,由於可降低生產成本、能源的使用及污染物的產生,而逐漸成為解決溫室效應問題的一項重要的技術。無機薄膜當中的碳分子篩選薄膜因具有耐高壓、高溫及化學安定性等優點,且能同時兼具高滲透率及高選擇率,故近年於薄膜分離材料之發展領域中逐漸受重視。
本研究選用碳分子篩選薄膜做為氣體分離層,主要係經由高溫熱裂解前驅物產生具有狹小微孔分布之非晶相結構。因此,碳分子篩選薄膜氣體分離效能主要受到其製備參數如不同高分子前驅物、熱裂解條件等參數來控制其薄膜孔洞結構因而改變氣體滲透率及選擇率。碳分子篩薄膜通常以非對稱式薄膜存在,主要係由一層多孔性材料做為擔體,將碳膜沉積於擔體上形成非對稱式薄膜以提升其機械強度。然而,鮮少研究針對擔體之孔洞型態及兩者接合界面行為進行探討其對碳分子選薄膜氣體滲透、選擇行為之影響。因此,本研究選用氧化鋁(Al2O3)做為擔體層,利用不同燒結條件改變擔體層之結構及表面型態,將其製備成碳分子篩薄膜後探討擔體結構對薄膜氣體分選效能之影響。本研究利用控制氧化鋁燒結溫度900~1200℃及持溫時間分別為1及2小時,並與廠商代燒之1400℃之氧化鋁比較,藉由氧化鋁(Al2O3)燒結行為改變氧化鋁擔體晶粒成長情形,提供擔體層不同的孔洞結構進而影響碳膜層的層間距、孔徑分佈與表面粗糙度,探討其對氣體分選效能之影響。
結果顯示當燒結溫度增加時(至1200℃),因晶粒成長行為提供一表面粗糙度較低之擔體提升薄膜附著效果減少缺陷產生,因此降低薄膜滲透率卻有明顯提升選擇率的效果,H2/CH4選擇率可達76。持溫時間從1小時提升到2小時時,擔體晶粒大小皆隨持溫時間增加而增加,因此其滲透率有下降、選擇率提升的效果。 本研究結果皆超越Robeson’s 2008 upper bound比較,顯示為具有高滲透及選擇效能之薄膜。

Application of membrane technology in industrial process has become an alternative technology for reducing CO2 emissions due to its low operating costs, energy saving, and no secondary pollutants emission. Among the inorganic membranes, carbon molecular sieveing (CMS) membrane has been paid much attention than polymeric membranes due to its thermal and chemical stability even under high pressure and harsh environments.
In this study, CMS membrane was selected as the selective layer for gas separation. Generally, CMS membrane was obtained by pyrolysis of polymeric casting film to produce amorphous structure with possess the narrow pore size distribution close to the dimensions of gas molecular. Therefore, the gas separation performance, i.e. permeability and selectivity was determined by polymer precursor, pretreatment, pyrolysis conditions and post treatment. To enhance the mechanical stability, CMS membrane is usually supported on the porous material to form an asymmetric membrane. However, there are few literature investigated the effect of support material structure on the gas separation performance. In this study, the porous alumina material was used as the support to fabricate the CMS membrane. The alumina structure was modified by sintering treatment under different sintering temperature (from 900 to 1200 ℃) and sinter time (from 1 to 2 h). The effects of sintering treatment on the support structure, CMS membrane structure and gas separation performance. The characterization of support materials and CMS membrane were investigated by TGA, XRD, BET, AFM and SEM.
The results indicated that the gas permeability was decreased with the sintering temperature increased, while the selectivity was increased simultaneously. CMS membrane supported on alumina which sintered at 1200 ℃, showed better H2 permeability of 1046.07±128.27 Barrer [1 Barrer = 1*10-10 cm3 (STP) cm/(cm2 s cmHg)] and an ideal H2/CH4 selectivity of 76 ± 23, respectively. The results indicated that the permselectivity of carbon molecular sieving (CMS) membrane fabricated in this study can exceed the 2008 Robeson's trade-off line.
URI: http://hdl.handle.net/11455/5090
其他識別: U0005-2806201121295700
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.