Please use this identifier to cite or link to this item:
標題: 奈米乳化液與奈米氧化鐵對底泥中多氯聯苯生物降解之影響探討
Influence of Nanoemulsion and Magnetite Nanoparticle on Biodegradation of Polychlorinated Biphenyls in a Simulated River Sediment
作者: 江蓬鈺
Chiang, Peng-Yu
關鍵字: Polychlorinated biphenyls;多氯聯苯;Aroclor 1242;Sediment;Dechlorination;Oxidative degradation;Nanoemulsion;Magnetite nanoparticle;Aroclor 1242;底泥;厭氧脫氯;好氧分解;奈米乳化液;奈米氧化鐵
出版社: 環境工程學系所
引用: 1. Abramowicz, D. A., Brennan, M. J., Van Dort, H. M., & Gallagher, E. L. (1993). Factors influencing the rate of polychlorinated biphenyls dechlorination in hudson river sediments. Environmental Science & Technology, 27(6), 1125-1131. 2. Abramowicz, D. A. (1990). Aerobic and anaerobic biodegradation of PCBs: A review. Critical Reviews in Biotechnology, 10(3), 241-251. 3. Adriaens, P., Kohler, H. P., Kohler-Staub, D., & Focht, D. D. (1989). Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4, 4''-dichlorobiphenyl. Applied and Environmental Microbiology, 55(4), 887. 4. Alder, A. C., Haggblom, M. M., Oppenheimer, S. R., & Young, L. Y. (1993). Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments. Environmental Science & Technology, 27(3), 530-538. 5. Banerjee, S. S. & Chen, D. (2007). Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. Journal of Hazardous Materials, 147(3), 792-799. 6. Bignert, A., Olsson, M., Persson, W., Jensen, S., Zakrisson, S., Litzen, K., Eriksson, U., Haggberg, L., & Alsberg, T. (1998). Temporal trends of organochlorines in northern europe, 1967-1995. relation to global fractionation, leakage from sediments and international measures. Environmental Pollution, 99(2), 177-198. 7. Borja, J., Taleon, D. M., Auresenia, J., & Gallardo, S. (2005). Polychlorinated biphenyls and their biodegradation. Process Biochemistry, 40(6), 1999-2013. 8. Brown, J. F., Bedard, D. L., Brennan, M. J., Carnahan, J. C., Feng, H., & Wagner, R. E. (1987). Polychlorinated biphenyl dechlorination in aquatic sediments. Science, 236(4802), 709. 9. Burns, J. E. (1974). Organochlorine pesticide and polychlorinated biphenyl residues in biopsied human adipose tissue—Texas 1969-72. Pestic.Monit.J, 7(3/4), 122-126. 10. Chen, A. S. C., Gavaskar, A. R., Alleman, B. C., Massa, A., Timberlake, D., & Drescher, E. H. (1997). Treating contaminated sediment with a two-stage base-catalyzed decomposition (BCD) process: Bench-scale evaluation. Journal of Hazardous Materials, 56(3), 287-306. 11. Chiarenzelli, J., Scrudato, R., Wunderlich, M., Rafferty, D., Jensen, K., Oenga, G., Roberts, R., & Pagano, J. (1995). Photodecomposition of PCBs absorbed on sediment and industrial waste: Implications for photocatalytic treatment of contaminated solids. Chemosphere, 31(5), 3259-3272. 12. Clark, M. (1997). Health effects of polychlorinated biphenyls. EPA, Washington, USA, 13. Coulibaly, K. M. & Borden, R. C. (2004). Impact of edible oil injection on the permeability of aquifer sands. Journal of Contaminant Hydrology, 71(1-4), 219-237. 14. DeMarini, D. M., Houk, V. S., Kornel, A., & Rogers, C. J. (1992). Effect of a base-catalyzed dechlorination process on the genotoxicity of PCB-contaminated soil. Chemosphere, 24(12), 1713-1720. 15. DeWeerd, K. A., Concannon, F., & Suflita, J. M. (1991). Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by desulfomonile tiedjei. Applied and Environmental Microbiology, 57(7), 1929. 16. Fish, K. M. & Principe, J. M. (1994). Biotransformations of aroclor 1242 in hudson river test tube microcosms. Applied and Environmental Microbiology, 60(12), 4289. 17. Furukawa, K. (1994). Molecular genetics and evolutionary relationship of PCB-degrading bacteria. Biodegradation, 5(3), 289-300. 18. Furukawa, K. & Kimura, N. (1995). Biochemistry and genetics of PCB metabolism. Environmental Health Perspectives, 103(Suppl 5), 21. 19. Gagnon, M. M., Dodson, J. J., Comba, M. E., & Kaiser, K. L. E. (1990). Congener-specific analysis of the accumulation of polychlorinated biphenyls (PCBs) by aquatic organisms in the maximum turbidity zone of the st. lawrence estuary, quebec, canada. Science of the Total Environment, 97-98, 739-759. 20. Harkness, M. R. (2000). Economic considerations in enhanced anaerobic biodegradation. Second International Conference on Remediation of Chlorinated and Racalcitrant Compounds, 9-14. 21. Herring, J. L., Hannan, E. J., & Bills, D. D. (1972). UV irradiation of aroclor 1254. Bulletin of Environmental Contamination and Toxicology, 8(3), 153-157. 22. Holliger, C., Schraa, G., Stams, A. J., & Zehnder, A. (1992). Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1, 2, 3-trichlorobenzene to 1, 3-dichlorobenzene. Applied and Environmental Microbiology, 58(5), 1636. 23. Jacqueline, Q., Christian, C., Cherie L. G., Christina, C., Cristina M. B., Laura B. F., & Kristen M. M. (2007). Removal of PCB and other halogenated organic contaminants found in ex situ. Washington DC, USA: US007271199B1. 24. Jeremiason, J. D., Hornbuckle, K. C., & Eisenreich, S. J. (1994). PCBs in lake superior, 1978-1992: Decreases in water concentrations reflect loss by volatilization. Environmental Science & Technology, 28(5), 903-914. 25. Klasson, K. T., Barton, J. W., Evans, B. S., & Reeves, M. E. (1996). Reductive microbial dechlorination of indigenous polychlorinated biphenyls in soil using a Sediment‐Free inoculum. Biotechnology Progress, 12(3), 310-315. 26. Kraul, I. & Karlog, O. (1976). Persistent organochlorinated compounds in human organs collected in denmark 1972-1973. Acta Pharmacologica Et Toxicologica, 38(1), 38-48. 27. Long, C. M. & Borden, R. C. (2006). Enhanced reductive dechlorination in columns treated with edible oil emulsion. Journal of Contaminant Hydrology, 87(1-2), 54-72. 28. Luckas, B., Predel, W., & Vietinghoff, U. (1981). Contamination of human fat from rostock residents with DDT and polychlorinated biphenyls in 1979). [Zur Kontamination von Humanfett Rostocker Burger mit DDT und polychlorierten Biphenylen im Jahre 1979] Die Nahrung, 25(5), 427-433. 29. Mastalerz, P. (2005). The true story of DDT, PCB, and dioxin Wydawnictwo Chemiczne. 30. May, H. D., Boyle, A. W., Price II, W. A., & Blake, C. K. (1992). Subculturing of a polychlorinated biphenyl-dechlorinating anaerobic enrichment on solid media. Applied and Environmental Microbiology, 58(12), 4051. 31. McCue, J. J., Gauger, K. W., Holsen, T. H., Kelly, R. L., & Cha, D. K. (1996). Effects of selected reducing agents on microbiologically mediated reductive dechlorination of aroclorR 1242. Environmental Toxicology and Chemistry, 15(7), 1071-1082. 32. McLeese, D. W., Metcalfe, C. D., & Pezzack, D. S. (1980). Uptake of PCBs from sediment by nereis virens and crangon septemspinosa. Archives of Environmental Contamination and Toxicology, 9(5), 507-518. 33. Miao, X. S., Chu, S. G., & Xu, X. B. (1999). Degradation pathways of PCBs upon UV irradiation in hexane. Chemosphere, 39(10), 1639-1650. 34. Miller, W. P. & Miller, D. M. (1987). A micro-pipette method for soil mechanical analysis. Communications in Soil Science and Plant Analysis, 18(1), 1-15. 35. Mohn, W. W. & Tiedje, J. M. (1992). Microbial reductive dehalogenation. Microbiology and Molecular Biology Reviews, 56(3), 482. 36. Morris, P. J., Mohn, W. W., Quensen III, J. F., Tiedje, J. M., & Boyd, S. A. (1992). Establishment of polychlorinated biphenyl-degrading enrichment culture with predominantly meta dechlorination. Applied and Environmental Microbiology, 58(9), 3088. 37. Morse, J. J. (1998). Draft technical protocol: A Treatability Test for Evaluating the Potential Applicability of the Reductive Anaerobic Biological in situ Treatment Technology. Washington, DC: DTIC Document. 38. Nierenberg, W. A. (1995). Encyclopedia of environmental biology Academic press. 39. Nies, L. & Vogel, T. M. (1991). Identification of the proton source for the microbial reductive dechlorination of 2, 3, 4, 5, 6-pentachlorobiphenyl. Applied and Environmental Microbiology, 57(9), 2771. 40. Noren, K. & Meironyte, D. (2000). Certain organochlorine and organobromine contaminants in swedish human milk in perspective of past 20–30 years. Chemosphere, 40(9-11), 1111-1123. 41. Oliveira, L. C. A., Rios, R. V. R. A., Fabris, J. D., Sapag, K., Garg, V. K., & Lago, R. M. (2003). Clay–iron oxide magnetic composites for the adsorption of contaminants in water. Applied Clay Science, 22(4), 169-177. 42. Olsson, M., Bignert, A., Eckhelll, J., & Jonsson, P. (2000). Comparison of temporal trends (1940s–1990s) of DDT and PCB in baltic sediment and biota in relation to eutrophication. A Journal of the Human Environment, 29(4), 201. 43. Peterson, M. L. & Brown, G. E. (1996). Direct XAFS evidence for heterogeneous redox reaction at the aqueous chromium/magnetite interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 77-88. 44. Pettigrew, C. A., Breen, A., Corcoran, C., & Sayler, G. S. (1990). Chlorinated biphenyl mineralization by individual populations and consortia of freshwater bacteria. Applied and Environmental Microbiology, 56(7), 2036. 45. Quensen, J. F., Tiedje, J. M., & Boyd, S. A. (1988). Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science, 242(4879), 752. 46. Quensen, J. F.,III, Boyd, S. A., & Tiedje, J. M. (1990). Dechlorination of four commercial polychlorinated biphenyl mixtures (aroclors) by anaerobic microorganisms from sediments. Applied and Environmental Microbiology, 56(8), 2360-2369. 47. Ren, Y., Wei, X., & Zhang, M. (2008). Adsorption character for removal cu (II) by magnetic cu (II) ion imprinted composite adsorbent. Journal of Hazardous Materials, 158(1), 14-22. 48. Rhee, G. Y., Bush, B., Sokol, R. C., Bethoney, C. M., DeNucci, A., & Oh, H. M. (1993). Anaerobic dechlorination of aroclor 1242 as affected by some environmental conditions. Environmental Toxicology and Chemistry, 12(6), 1033-1039. 49. Shimura, M., Koana, T., Fukuda, M., & Kimbara, K. (1996). Complete degradation of polychlorinated biphenyls by a combination of ultraviolet and biological treatments. Journal of Fermentation and Bioengineering, 81(6), 573-576. 50. Sokol, R. C., Bethoney, C. M., & Rhee, G. (1994). Effect of hydrogen on the pathway and products of PCB dechlorination. Chemosphere, 29(8), 1735-1742. 51. Stookey, L. L. (1970). Ferrozine-A new spectrophotometric reagent for iron. Analytical Chemistry, 42(7), 781. 52. Sylvestre, M., Masse, R., Ayotte, C., Messier, F., & Fauteux, J. (1985). Total biodegradation of 4-chlorobiphenyl (4-CB) by a two-membered bacterial culture. Applied Microbiology and Biotechnology, 21(3), 192-195. 53. United States Environmental Protection Agency. (1991). Draft analytical method for determination of acid volatile sulfide in sediment NTIS. 54. United States Environmental Protection Agency. (2001). PCB detection technology DIANE Publishing. 55. Unterman, R., Bedard, D. L., Brennan, L. H., Bopp, H., Mondello, F. J., Brooks, R. E., Mobley, D. P., McDermott, J. B., Schwartz, C. C., & Dietrich, D. K. (1987). Biological approaches for polychlorinated biphenyl degradation Plenum Press: New York. 56. Van Haver, W., Vandezande, A., & Gordts, L. (1978). Organochlorine pesticides in human adipose tissue. [Organochloorpesticiden in het menselijk vetweefsel] Archives Belges De Medecine Sociale, Hygiene, Medecine Du Travail Et Medecine Legale.Belgisch Archief Van Sociale Geneeskunde, Hygiene, Arbeidsgeneeskunde En Gerechtelijke Geneeskunde, 36(3), 147-155. 57. Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N., & Van Cappellen, P. (2000). The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry, 15(6), 790. 58. Wiegel, J. & Wu, Q. (2000). Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiology Ecology, 32(1), 1-15. 59. Wu (1996). Ph.D. dissertation, University of Georgia,Athens, GA. 60. Yadav, J. S., Quensen III, J. F., Tiedje, J. M., & Reddy, C. A. (1995). Degradation of polychlorinated biphenyl mixtures (aroclors 1242, 1254, and 1260) by the white rot fungus phanerochaete chrysosporium as evidenced by congener-specific analysis. Applied and Environmental Microbiology, 61(7), 2560. 61. Ye, D., Quensen III, J. F., Tiedje, J. M., & Boyd, S. A. (1992). Anaerobic dechlorination of polychlorobiphenyls (aroclor 1242) by pasteurized and ethanol-treated microorganisms from sediments. Applied and Environmental Microbiology, 58(4), 1110. 62. Ye, D., Quensen III, J. F., Tiedje, J. M., & Boyd, S. A. (1995). Evidence for para dechlorination of polychlorobiphenyls by methanogenic bacteria. Applied and Environmental Microbiology, 61(6), 2166. 63. Zawtocki, C., Lieberman, M. T., Border, R. C., & Birk, G. M. (2004). Treatment of perchlorate and 1, 1, 1-trichloroethane in groundwater using edible oil substrate (EOSR). Proceedings of Remediation of Chlorinated and Recalcitrant Compounds–4th Internat. Conf., Monterey, CA, 64. Zwiernik, M. J., John III, F., & Boyd, S. A. (1998). FeSO4 amendments stimulate extensive anaerobic PCB dechlorination. Environmental Science & Technology, 32(21), 3360-3365. 65. 余光昌(2004)。河水底泥污染物釋出之研究─ 子計劃 1: 生物淋溶處理河川底泥時 PAH 之釋出。臺南市:嘉南藥理科技大學環境工程與科學系。 66. 呂耀卿 (1980)。多氯聯苯慢性中毒時皮膚症狀。當代醫學,7 (1),10-13。 67. 張則周 (1995)。土壤分析手冊。臺北巿:中華土壤肥料學會。 68. 張書奇 (2010)。整合式河川底泥復育技術開發計畫。NSC98-2622-E-005-024-CC2。行政院國家科學委員會。 69. 張書奇、陳姿文、游雨涵與林耀東 (2009)。植物油奈米乳化液在地下水層中傳輸現象探討。中華民國環境工程年會2009土壤與地下水研討會,雲林。 70. 張芳誠 (2002)。多氯聯苯之生物性與化學性降解之研究。國立臺灣大學農業化學研究所碩士論文,臺北市。 71. 徐民豐 (1999)。二仁溪河川底泥性質與多氯聯苯分佈狀況之研究。國立臺灣大學農業化學研究所碩士論文,臺北市。 72. 林依蓉 (2001)。多氯聯苯厭氧馴養降解菌群微生物多樣性解析。國立中央大學生命科學研究所碩士論文,桃園縣。 73. 王一雄 (2000)。台灣河川底泥中多氯聯苯污染變遷之研究。NSC-87-2313-B-002-011 NSC-88-2313-B-002-001 NSC-89-2313-B-002-001 74. 臺灣經濟部水利署 (2004)。河川復育–認識臺灣河川。2011 (6月) 75. 艾文健 (2001)。以微波輔助萃取法探討影響土中多氯聯苯脫附的因子。國立中興大學環境工程研究所碩士論文,臺中市。 76. 錢紀銘、萬孟瑋、黃漢哲與郭馨文 (2006)。二仁溪底泥多氯聯苯污染分佈之研究。嘉南學報,54~63-32。 77. 陳明財 (2007)。二仁溪底泥之多氯聯苯污染特性研究。嘉南藥理科技大學環境工程與科學研究所碩士論文,臺南市。 78. 黃思瑀 (2006)。河川底泥多氯聯苯污染之調查與復育規劃。嘉南藥理科技大學環境工程與科學研究所碩士論文,臺南市。
多氯聯苯為具有數個氯原子之聯苯分子,具有絕佳熱傳導性、電絕緣性,大量用於製造變電箱、電容器、油漆及油墨等。但因親脂性高、物化性穩定,一旦散佈到自然環境中易累積於土壤與底泥中,甚至藉由食物鏈逐漸累積於生物體乃至於人體內,持久存在於環境中、於生物體內代謝緩慢;且將使皮膚病變、損害神經系統與免疫系統,為疑似致癌物。以我國污染最為嚴重之一的二仁溪為例,其河床底泥中含高量多氯聯苯且高於管制上限,急需進行整治。生物降解法可分為厭氧性或好氧性生物降解法,雖二仁溪底泥中多氯聯苯可由生物降解處理,但底泥中同時含有高量足以影響生物代謝作用之重金屬,故降解多氯聯苯的同時須防止重金屬對生物降解的影響。基於以上污染特性,本研究於自行模擬配製之二仁溪底泥中,添加奈米乳化液與奈米氧化鐵,以探討厭氧與好氧下奈米乳化液提升脫氯效果之可行性並探討預計作為重金屬吸附劑之奈米氧化鐵對於好氧分解、厭氧脫除多氯聯苯之影響。研究結果顯示無添加奈米乳化液與奈米氧化鐵時好氧降解Aroclor 1242優於厭氧脫氯之效果;當已含有碳源時添加奈米乳化液可提升厭氧脫氯作用之效率,但產氣量將隨添加量增加而下降,且添加低量奈米氧化鐵亦有助於還原脫氯。於好氧環境下添加奈米乳化液將降低好氧分解效果,而添加奈米氧化鐵則不影響分解效果。整體而言,於相同操作條件下最佳Aroclor 1242 處理環境為靜置。

Polychlorinated biphenyls (PCBs) are a family of biphenyl molecule compounds which pick of several chlorine atoms. Because of their excellent thermal conductivity, electrical insulation, PCBs are used extensively for the industrial manufacture of transformer boxes, capacitors, paints and inks. Because of the high lipophilicity, and the physical and chemical stability, PCBs is easy to accumulate in the soil, sediment, and even through the food chain accumulate in higher organisms as well as in the human body. And PCBs are also highly resistant to degradation in nature and metabolize slowly in organisms. If they enter into human body could lead to skin disease, and damage to the nervous system and immune system, also carcinogenic. For example, to one of Taiwan''s most polluted Er-Ren river, the sediment in the Taiwan''s most polluted Er-Ren river contain high levels of PCBs above the regulatory limit and in urgent to regulate. There are two biologically processes which could degrade PCBs effective in sediment: anaerobic reductive dechlorination and aerobic oxidative degradation. These processes have been used to for several years, but the biodegradation time was needed. However, the sediment in the Er-Ren river also contain high levels of heavy metal which could reduction the biodegradation of PCBs. Based on the above characteristics of pollution, this study will try to add nanoemulsion to increase the efficiency of biodegradation in simulation sediment content Aroclor 1242 (one commodity of PCBs), and also add magnetite nanoparticle which be report could adsorb heavy metal to identify the influence for biodegradation.
The result show that the efficiency of aerobic biodegradation is better than anaerobic biodegradation without adding nanoemulsion and magnetite nanoparticle. When adding few amount (0.1%) of nanoemulsion into the sediment contented yeast extract under the anaerobic condition could increase the efficiency of anaerobic reductive dechlorination, but will product a little of gas volume with adding high amount of nanoemulsion (10%). Adding few amount (20 mg L-1) of magnetite nanoparticle also could increase the efficiency of anaerobic reductive dechlorination. However, adding nanoemulsion will reduce the efficiency of aerobic oxidative degradation, and magnetite nanoparticle will not change the efficiency. Furthermore, under the same additional amount of nanoemulsion and magnetite nanoparticle the best condition to degrade Aroclor 1242 is standing environment.
其他識別: U0005-2807201110504400
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.