Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5092
DC FieldValueLanguage
dc.contributor.advisor望熙榮zh_TW
dc.contributor.author阮俊凱zh_TW
dc.contributor.authorRuan, Chun-Kaien_US
dc.date2005zh_TW
dc.date.accessioned2014-06-06T06:34:00Z-
dc.date.available2014-06-06T06:34:00Z-
dc.identifier.urihttp://hdl.handle.net/11455/5092-
dc.description.abstract國內受體模式中設定的污染源種類包含了固定源、移動源、逸散源以及二次氣膠(硫酸鹽、硝酸鹽)。其中硫酸鹽與硝酸鹽為由硫氧化物及氮氧化物排放到空氣中,經由光化作用產生之污染物,與一般之污染源排放情況略有不同,若視為污染源進行模擬,解析結果僅能了解二次光化污染物硫酸鹽及硝酸鹽物種之污染嚴重情形,而不能了解硫酸鹽及硝酸鹽實際的污染來源。本研究期望將SO42-及NO3-之排放,加入污染源排放特徵中,以探討SO42-及NO3-之污染來源。 SOx(或NOx)由排放口傳輸至受體點位置的過程中,假設SOx(或NOx)轉換為二次光化污染物硫酸鹽(或硝酸鹽)之比率,並將資料庫中各污染源排放之SOx(或NOx)轉換成硫酸鹽(或硝酸鹽)後加入污染源排放特徵中,進行模擬模式之解析。之後再進一步進行比較,嘗試找出該二種污染物在不同轉換比率之下,對污染源污染量解析結果之影響。 以SOX之轉換比率為45%進行模式之解析,則發現大甲測站SO42-污染量之來源可能來自交通、銅製廠及鋁製廠。在后里測站SO42-之主要來源可能是來自於焚化廠、交通及鋼鐵廠。NOX之轉換比率為1~3%進行模式之解析,則在大甲測站NO3-之主要來源可能是來自於鋼鐵廠、焚化爐以及銅製業;而在后里測站NO3-之主要來源可能是來自於交通以及鋁製廠。 將SOX及NOX合併探討轉化率時,發現在日間及夜間,其SOX及NOX二者所需搭配之轉換比率互有不同。后里及大甲測站晚間之NOX轉換比率均為1%,而后里及大甲測站晚間SOX的轉換比率分別為50%及30%,在后里夜間其硫酸鹽及硝酸鹽物種主要來源應為交通、銅製廠以及鋁製廠,而在大甲夜間其硫酸鹽及硝酸鹽物種主要來源應為焚化爐、銅製廠、揚塵、鋁製廠以及交通。 在日間后里及大甲測站之SOX轉換比率均為50%,而后里及大甲測站NOX轉換比率分別為6%及1%,在后里日間硫酸鹽及硝酸鹽物種之主要來源應為焚化廠、鋼鐵業、交通及鋁製造業。在大甲日間硫酸鹽及硝酸鹽物種之主要來源應為焚化廠、銅製廠、交通及鋁製造業。zh_TW
dc.description.abstractPollution source category in Taiwan includes stationary source, mobile source, fugitive source and secondary aerosol (sulfate, nitrate). Photochemistry reactions transform SOx and NOx emission from atmosphere into SO4-2 and NO3- , but it is different from ordinary condition which pollutants emitted. If they are regarded as pollution source to proceed with model simulation, the results only understand SO4-2 and NO3- contaminative situation, but they can't find out actual source of SO4-2 and NO3-. The study expects to add the emission of SO4-2 and NO3- to source profile, and look into source of SO4-2 and NO3- . In the SOx ( NOx ) transportation process from emission spot to receptor site, we assume the ratio which transform SOx ( NOx ) into SO4-2 ( NO3- ) as a constant, and add it to source profile to carry out model simulation. Further, it proceed to compare, attempt to find out the two pollutants (SO4-2 and NO3- ) influence on source contribution in the different transform ratio. From the model simulation with 45 % transformative ratio of SOx , we find out the major SO4-2 source of Da Jia site may refer to traffic, Cu manufacturing factory and Al manufacturing factory ; major SO4-2 source of Hou Li site could caused by incinerator, traffics and ironworks. 1~3% transformative ratio of NOx proceeds with model simulation, major NO3- source of Da Jia site would due to ironworks, incinerator, and Cu manufacturing factory; major NO3- source of Hou Li site may come from traffic and Al manufacturing factory. When it exists in transformative ratio of SOX and NOX simultaneously, it can find that transformative ratio of SOX and NOX in the daytime is different from the night. Transformative ratio of NOx in the Da Jia and Hou Li is 1% at night, but the ratio of SOx at Da Jia and Hou Li is 50% and 30%, respectively. Major SO4-2 and NO3- source of Hou Li site in the night included traffic, Cu manufacturing factory and Al manufacturing factory; major SO4-2 and NO3- source of Da Jia site in the night included incinerator, Cu manufacturing factory, fugitive dust, Al manufacturing factory and traffic. Transformative ratio of SOx at Da Jia and Hou Li is 50% in the daytime, but transformative ratio of NOx at Da Jia and Hou Li is 6% and 1%, respectively. Major SO4-2 and NO3- source of Hou Li site in the daytime included incinerator, ironworks, traffic, Al manufacturing factory; Major SO4-2 and NO3- source of Da Jia site in the daytime included incinerator, Cu manufacturing factory, traffic and Al manufacturing factory.en_US
dc.description.tableofcontents目錄 摘要 I Abstract III 目錄 V 表目錄 VII 圖目錄 IX 第一章 前言 1 1.1研究緣起 1 1.2研究目的 2 第二章 文獻回顧 3 2.1化學質量平衡法(CMB) 3 2.2 懸浮微粒特性 11 2.3 受體模式之應用 13 2.3.1 國內受體模式之相關研究 13 2.3.2 國外受體模式之相關研究 15 2.3.3 硫酸鹽與硝酸鹽之相關研究 16 2.4排放量現況 17 第三章 研究方法 21 3.1受體模式 21 3.1.1 污染源排放特徵 22 3.1.2 周界濃度 25 3.2研究流程 26 3.3 二次光化污染物(硫酸鹽與硝酸鹽) 28 3.4轉換比率的選擇 30 3.4.1硫酸鹽與硝酸鹽轉換比率之選擇 31 3.4.2 只有單獨探討個別的二次光化污染物 33 3.4.2.1只有探討硫氧化物轉換為硫酸鹽的情況下 34 3.4.2.2只有探討氮氧化物轉換為硝酸鹽的情況下 34 3.4.3同時探討硫氧化物,氮氧化物的轉換 35 第四章 結果與討論 41 4.1使用原始污染源排放特徵之解析結果 41 4.2只有單獨探討個別的二次光化污染物 44 4.2.1 只有探討硫氧化物轉換為硫酸鹽之比例 44 4.2.2 只有探討氮氧化物轉換為硝酸鹽之比例 52 4.3光化污染物種之污染源排放特徵. 60 4.4 SOX與NOX 62 4.4.1夜間硫氧化物與氮氧化物轉換比例 63 4.4.2日間硫氧化物與氮氧化物轉換比之探討 67 第五章 結論與建議 73 5.1 結綸 73 5.2 建議 74 參考文獻 77 附錄一 各污染源排放組成數據 83zh_TW
dc.language.isoen_USzh_TW
dc.publisher環境工程學系zh_TW
dc.subjectreceptor modelingen_US
dc.subject受體模式zh_TW
dc.subjecttransformative ratioen_US
dc.subject轉換比率zh_TW
dc.title硫酸鹽與硝酸鹽之轉換比率在受體模式中之探討-以大甲和后里作為研究測站zh_TW
dc.titleA study on transformative ratio of sulfate and nitrate in receptor modeling-using Da Jia and Hou Li as study sitesen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:環境工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.