Please use this identifier to cite or link to this item:
標題: 微波多元醇法製備負載型銅觸媒應用於潔淨發電技術之研究
Studies on the preparation of supported copper catalysts through microwave polyol process for clean power-generation technology
作者: 莊桂鶴
Chuang, Kui-Hao
關鍵字: catalyst;觸媒;microwave heated polyol process;clean power-generation technology;CO;NO;微波多元醇法;潔淨發電技術;一氧化碳;一氧化氮
出版社: 環境工程學系所
引用: 勞工安全衛生研究所—物質安全資料表 (序號:57;CAS. No.: 00107-21-1), 尹邦躍, 2002. 奈米時代nano. 五南圖書出版股份有限公司, 台北市. 王奕凱, 邱宏明, 李炳傑, 1988. 非均勻系催化原理與應用. 渤海堂文化事業, 台北市. 江旭禎, 儀器總覽—化學分析儀器. 國家科技研究院儀器科技研究中心. 衣寶廉, 2007. 燃料電池-原理與應用. 五南圖書出版股份有限公司, 台北市. 吳榮宗, 1998. 工業觸媒概論. 國興出版社. 林子淵, 2006. 硫化氫毒化現象對質子交換膜燃料電池性能影響之暫態分析, 機械工程系所, 國立交通大學, p. 70. 馬振基, 2005. 奈米材料科技原理與應用. 初版 全華科技圖書股份有限公司, 台北市. 高勇, 王玲玲, 刘晃清, 2004. 纳米CeO2粉末的製備及應用研究. 材料導報 18, 128-130. 賀泓,李俊華,何洪,上官文峰,胡春, 2008. 環境催化-原理及應用. 科學出版社, 北京. 楊文毅, 2000. 鈀觸媒氧化焚化廢氣中有機物之研究, 國立中興大學環工系. 鄭修成, 張曉麗, 王淑榮, 于麗華, 王向宇, 吳世華, 2005. 不同CuO/CeO2催化劑上CO低溫氧化反應. 催化學報 26, 971-976. 鍾秦, 2002. 燃煤煙氣脫硫脫硝技術及工程實例. 化學工業出版社, 北京. 韓振華, 李國彬, 田峰, 焦鍵, 2007. 纳米CeO2的製備及其應用. 納米科技 4, 23-30. Occupational Safety and Health Administration, Acres, G.J.K., 2001. Recent advances in fuel cell technology and its applications. Journal of Power Sources 100, 60-66. Ahmed, S.N., Baldwin, R., Derbyshire, F., McEnaney, B., Stencel, J., 1993. Catalytic reduction of nitric oxide over activated carbons. Fuel 72, 287-292. Andrade Sales, E., Benhamida, B., Caizergues, V., Lagier, J.P., Fiévet, F., Bozon-Verduraz, F., 1998. Alumina-supported Pd, Ag and Pd-Ag catalysts: Preparation through the polyol process, characterization and reactivity in hexa-1,5-diene hydrogenation. Applied Catalysis A: General 172, 273-283. Avgouropoulos, G., Ioannides, T., Matralis, H.K., Batista, J., Hocevar, S., 2001. CuO–CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catalysis Letters 73, 33-40. Beyer, H., Köhler, K., 2010. NOx removal by rhodium catalysts supported on carbon nanotubes: Evidence for the stoichiometric reduction of NO2 and NO by the carbon support. Applied Catalysis B: Environmental 96, 110-116. Bo, L.L., Quan, X., Wang, X.C., Chen, S., 2008. Preparation and characteristics of carbon-supported platinum catalyst and its application in the removal of phenolic pollutants in aqueous solution by microwave-assisted catalytic oxidation. Journal of Hazardous Materials 157, 179-186. Boehm, H.P., 1966. Advances in Catalysis. 5th ed. Academic Press, New York-London. Bonet, F., Grugeon, S., Herrera Urbina, R., Tekaia-Elhsissen, K., Tarascon, J.M., 2002. In situ deposition of silver and palladium nanoparticles prepared by the polyol process, and their performance as catalytic converters of automobile exhaust gases. Solid State Sciences 4, 665-670. Bosch, H., Janssen, F., 1988. Formation and control of nitrogen oxides. Catalysis Today 2, 369-379. Carotenuto, G., 2001. Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size. Applied Organometallic Chemistry 15, 344-351. Casagrande, L., Lietti, L., Nova, I., Forzatti, P., Baiker, A., 1999. SCR of NO by NH3 over TiO2-supported V2O5-MoO3 catalysts: reactivity and redox behavior. Applied Catalysis B: Environmental 22, 63-77. Chae, K.J., Nam, I.S., Yang, H.S., Song, S.L., Do Hur, I., 2001. Use of V2O5/Ti-PILC catalyst for the reduction of NO by NH3. Journal of Chemical Engineering of Japan 34, 148-153. Chang, L.H., Sasirekha, N., Rajesh, B., Chen, Y.W., 2007. CO oxidation on ceria- and manganese oxide-supported gold catalysts. Separation and Purification Technology 58, 211-218. Chang, S.G., Littlejohn, D., Lynn, S., 1983. Effects of metal chelates on wet flue gas scrubbing chemistry. Environmental Science & Technology 17, 649-653. Chang, Y.M., 1994. Effect of Incineration Temperature on CO Emission during Sludge Incineration in CFBI. Journal of the Chinese Institute of Environmental Engineering 4, 267-274. Chen, C.M., Jehng, J.M., 2004. Amination application over nano-Mg-Ni hydrogen storage alloy catalysts. Applied Catalysis A: General 267, 103-110. Chen, S., Xu, N., Shi, J., 2004. Structure and properties of polyether polyols catalyzed by Fe/Zn double metal cyanide complex catalyst. Progress in Organic Coatings 49, 125-129. Choi, Y., Stenger, H.G., 2004. Kinetics, simulation and insights for CO selective oxidation in fuel cell applications. Journal of Power Sources 129, 246-254. Chu, Y.Y., Wang, Z.B., Gu, D.M., Yin, G.P., 2010. Performance of Pt/C catalysts prepared by microwave-assisted polyol process for methanol electrooxidation. Journal of Power Sources 195, 1799-1804. Chuang, K.H., Liu, Z.S., Wey, M.Y., 2010. Catalytic activity of copper-supported catalyst for NO reduction in the presence of oxygen: Fitting of calcination temperature and copper loading. Materials Science and Engineering: B 175, 100-107. Costa, C.N., Savva, P.G., Fierro, J.L.G., Efstathiou, A.M., 2007. Industrial H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst. Applied Catalysis B: Environmental 75, 147-156. Dedecek, J., Capek, L., Sazama, P., Sobalík, Z., Wichterlová, B., 2011. Control of metal ion species in zeolites by distribution of aluminium in the framework: From structural analysis to performance under real conditions of SCR-NOx and NO, N2O decomposition. Applied Catalysis A: General 391, 244-253. Dow, W.P., Huang, T.J., 1994. Effects of Oxygen Vacancy of Yttria-Stabilized Zirconia Support on Carbon Monoxide Oxidation over Copper Catalyst. Journal of Catalysis 147, 322-332. Farrauto, R.J., Bartholomew, C.H., 1997. Fundamentals of Industrial Catalytic Processes. Chapman & Hall, London. Fierro, G., Dragone, R., Ferraris, G., 2008. NO and N2O decomposition and their reduction by hydrocarbons over Fe-Zn manganite spinels. Applied Catalysis B: Environmental 78, 183-191. Fritz, A., Pitchon, V., 1997. The current state of research on automotive lean NOx catalysis. Applied Catalysis B: Environmental 13, 1-25. Gálvez, M.E., Lázaro, M.J., Moliner, R., 2005. Novel activated carbon-based catalyst for the selective catalytic reduction of nitrogen oxide. Catalysis Today 102-103, 142-147. Gao, Z., Wu, Y., 1996. Influences of acid treatments of active carbons on NO reduction over carbon-supported copper oxides. Reaction Kinetics and Catalysis Letters 59, 359-366. Giakoumelou, I., Fountzoula, C., Kordulis, C., Boghosian, S., 2006. Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3: In situ Raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2. Journal of Catalysis 239, 1-12. Hammarberg, E., Prodi-Schwab, A., Feldmann, C., 2009. Microwave-assisted polyol synthesis of aluminium- and indium-doped ZnO nanocrystals. Journal of Colloid and Interface Science 334, 29-36. Haque, K.E., 1999. Microwave energy for mineral treatment processes--a brief review. International Journal of Mineral Processing 57, 1-24. He, H., Wang, J., Feng, Q., Yu, Y., Yoshida, K., 2003. Novel Pd promoted Ag/Al2O3 catalyst for the selective reduction of NOx. Applied Catalysis B: Environmental 46, 365-370. Heck, R.M., Farrauto, R.J., 1995. Catalytic air pollution control: Commercial technology. Van Nostrand Reinhold, New York. Hirai, H., 1979. Formation and Catalytic Functionality of Synthetic Polymer-Noble Metal Colloid. 13, 633 - 649. Ho Jung, U., Uk Jeong, S., Tae Park, K., Mee Lee, H., Chun, K., Woong Choi, D., Kim, S.H., 2007. Improvement of water management in air-breathing and air-blowing PEMFC at low temperature using hydrophilic silica nano-particles. International Journal of Hydrogen Energy 32, 4459-4465. Hornés, A., Bera, P., Cámara, A.L., Gamarra, D., Munuera, G., Martínez-Arias, A., 2009. CO-TPR-DRIFTS-MS in situ study of CuO/Ce1-xTbxO2-y (x=0, 0.2 and 0.5) catalysts: Support effects on redox properties and CO oxidation catalysis. Journal of Catalysis 268, 367-375. Huang, Y.J., Wang, H.P., Lee, J.F., 2003. Catalytic reduction of NO on copper/MCM-41 studied by in situ EXAFS and XANES. Chemosphere 50, 1035-1041. Igarashi, H., Uchida, H., Suzuki, M., Sasaki, Y., Watanabe, M., 1997. Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite. Applied Catalysis A: General 159, 159-169. Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E., Chaudhuri, G., 1987. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America 84, 9265-9269. Kantcheva, M., Samarskaya, O., Ilieva, L., Pantaleo, G., Venezia, A.M., Andreeva, D., 2009. In situ FT-IR investigation of the reduction of NO with CO over Au/CeO2-Al2O3 catalyst in the presence and absence of H2. Applied Catalysis B: Environmental 88, 113-126. Katsuki, H., Komarneni, S., 2001. Microwave-Hydrothermal Synthesis of Monodispersed Nanophase α-Fe2O3. Journal of the American Ceramic Society 84, 2313-2317. Kefirov, R., Penkova, A., Hadjiivanov, K., Dzwigaj, S., Che, M., 2008. Stabilization of Cu+ ions in BEA zeolite: Study by FTIR spectroscopy of adsorbed CO and TPR. Microporous and Mesoporous Materials 116, 180-187. Kim, D.H., Cha, J.E., 2003. A CuO-CeO2 mixed-oxide catalyst for CO Clean-Up by Selective Oxidation in Hydrogen-Rich Mixtures. Catalysis Letters 86, 107-112. Kobayashi, M., Hagi, M., 2006. V2O5-WO3/TiO2-SiO2-SO42- catalysts: Influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2. Applied Catalysis B: Environmental 63, 104-113. Kobayashi, M., Miyoshi, K., 2007. WO3-TiO2 monolithic catalysts for high temperature SCR of NO by NH3: Influence of preparation method on structural and physico-chemical properties, activity and durability. Applied Catalysis B: Environmental 72, 253-261. Kubo R., 1962. Generalized cumulant expansion method. Journal of the Physical Society of Japan 17, 1100–1120. Kumar, P.A., Reddy, M.P., Ju, L.K., Hyun-Sook, B., Phil, H.H., 2008. Low temperature propylene SCR of NO by copper alumina catalyst. Journal of Molecular Catalysis A: Chemical 291, 66-74. Kurihara, L.K., Chow, G.M., Schoen, P.E., 1995. Nanocrystalline metallic powders and films produced by the polyol method. Nanostructured Materials 5, 607-613. Lei, C., Shen, M., Yang, M., Wang, J., Wang, J., 2011. Modified textures and redox activities in Pt/Al2O3+BaO/CexZr1-xO2 model NSR catalysts. Applied Catalysis B: Environmental 101, 355-365. Levenspiel, O., 1999. Chemical Reactions Engineering. 3rd ed. John Wiley & Sons, New York. Li, X., Chen, W.X., Zhao, J., Xing, W., Xu, Z.D., 2005. Microwave polyol synthesis of Pt/CNTs catalysts: Effects of pH on particle size and electrocatalytic activity for methanol electrooxidization. Carbon 43, 2168-2174. Liu, G., Zhang, H.M., Wang, M.R., Zhong, H.X., Chen, J., 2007. Preparation, characterization of ZrOxNy/C and its application in PEMFC as an electrocatalyst for oxygen reduction. Journal of Power Sources 172, 503-510. Liu, L., Zhou, F., Wang, L., Qi, X., Shi, F., Deng, Y., 2010. Low-temperature CO oxidation over supported Pt, Pd catalysts: Particular role of FeOx support for oxygen supply during reactions. Journal of Catalysis 274, 1-10. Liu, Z.L., Lee, J.Y., Chen, W.X., Han, M., Gan, L.M., 2004. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Langmuir 20, 181-187. Lu, C.Y., Tseng, H.H., Wey, M.Y., Hsueh, T.W., 2009a. The comparison between the polyol process and the impregnation method for the preparation of CNT-supported nanoscale Cu catalyst. Chemical Engineering Journal 145, 461-467. Lu, C.Y., Tseng, H.H., Wey, M.Y., Liu, L.Y., Chuang, K.H., 2009b. Effects of the ratio of Cu/Co and metal precursors on the catalytic activity over Cu-Co/Al2O3 prepared using the polyol process. Materials Science and Engineering: B 157, 105-112. Lu, C.Y., Tseng, H.H., Wey, M.Y., Liu, L.Y., Kuo, J.H., Chuang, K.H., 2009c. Al2O3-supported Cu-Co bimetallic catalysts prepared with polyol process for removal of BTEX and PAH in the incineration flue gas. Fuel 88, 340-347. Lu, C.Y., Wey, M.Y., Chen, L.I., 2007. Application of polyol process to prepare AC-supported nanocatalyst for VOC oxidation. Applied Catalysis A: General 325, 163-174. Lu, C.Y., Wey, M.Y., Fu, Y.H., 2008. The size, shape, and dispersion of active sites on AC-supported copper nanocatalysts with polyol process: The effect of precursors. Applied Catalysis A: General 344, 36-44. Luo, M.F., Zhong, Y.J., Yuan, X.X., Zheng, X.-M., 1997. TPR and TPD studies of catalysts for low temperature CO oxidation. Applied Catalysis A: General 162, 121-131. Luo, X., Li, Z., Yuan, C., Chen, Y., Polyol synthesis of silver nanoplates: The crystal growth mechanism based on a rivalrous adsorption. Materials Chemistry and Physics In Press. Mediavilla, M., Morales, H., Melo, L., Sifontes, A.B., Albornoz, A., Llanos, A., Moronta, D., Solano, R., Brito, J.L., 2010. Microwave-assisted polyol synthesis of Pt/H-ZSM5 catalysts. Microporous and Mesoporous Materials 131, 342-349. Miller, G.T., 1993. Environmental science: Sustaining the earth. 4th ed. Wadsworth, California. Miyazaki, A., Balint, I., Aika, K.I., Nakano, Y., 2001. Preparation of Ru Nanoparticles Supported on γ-Al2O3 and Its Novel Catalytic Activity for Ammonia Synthesis. Journal of Catalysis 204, 364-371. Mohtadi, R., Lee, W.K., Van Zee, J.W., 2005. The effect of temperature on the adsorption rate of hydrogen sulfide on Pt anodes in a PEMFC. Applied Catalysis B: Environmental 56, 37-42. Nekooi, P., Akbari, M., Amini, M.K., 2010. CoSe nanoparticles prepared by the microwave-assisted polyol method as an alcohol and formic acid tolerant oxygen reduction catalyst. International Journal of Hydrogen Energy 35, 6392-6398. Okal, J., Zawadzki, M., Tylus, W., 2011. Microstructure characterization and propane oxidation over supported Ru nanoparticles synthesized by the microwave-polyol method. Applied Catalysis B: Environmental 101, 548-559. Pérez-Hernández, R., Gómez-Cortés, A., Arenas-Alatorre, J., Rojas, S., Mariscal, R., Fierro, J.L.G., Díaz, G., 2005. SCR of NO by CH4 on Pt/ZrO2-TiO2 sol-gel catalysts. Catalysis Today 107-108, 149-156. Pârvulescu, V.I., Grange, P., Delmon, B., 1998. Catalytic removal of NO. Catalysis Today 46, 233-316. Pasel, J., Käßner, P., Montanari, B., Gazzano, M., Vaccari, A., Makowski, W., Lojewski, T., Dziembaj, R., Papp, H., 1998. Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3. Applied Catalysis B: Environmental 18, 199-213. Paur, H.R., Jordan, S., 1989. The influence of SO2 and NH3 concentrations on the aerosol formation in the electron beam dry scrubbing process. Journal of Aerosol Science 20, 7-11. Phil, H.H., Reddy, M.P., Kumar, P.A., Ju, L.K., Hyo, J.S., 2008. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures. Applied Catalysis B: Environmental 78, 301-308. Prasad, R., Kennedy, L.A., Ruckenstein, E., 1984. Catalytic Combustion. Catalysis Reviews: Science and Engineering 26, 1 - 58. Sada, E., Kumazawa, H., Kudo, I., Kondo, T., 1978. Absorption of no in aqueous mixed solutions of NaClO2 and NaOH. Chemical Engineering Science 33, 315-318. Satterfield, C.N., 1980. Heterogeneous Catalysis in Practice. McGraw-Hill, New York. Sedmak, G., Hocevar, S., Levec, J., 2003. Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2-y catalyst. Journal of Catalysis 213, 135-150. Shi, W., Yi, B., Hou, M., Shao, Z., 2007. The effect of H2S and CO mixtures on PEMFC performance. International Journal of Hydrogen Energy 32, 4412-4417. Shibata, J., Takada, Y., Shichi, A., Satokawa, S., Satsuma, A., Hattori, T., 2004. Influence of zeolite support on activity enhancement by addition of hydrogen for SCR of NO by propane over Ag-zeolites. Applied Catalysis B: Environmental 54, 137-144. Slinko, M.M., Ukharskii, A.A., Peskov, N.V., Jaeger, N.I., 2001. Chaos and synchronisation in heterogeneous catalytic systems: CO oxidation over Pd zeolite catalysts. Catalysis Today 70, 341-357. Smith, O.I., 1981. Fundamentals of soot formation in flames with application to diesel engine particulate emissions. Progress in Energy and Combustion Science 7, 275-291. Snytnikov, P.V., Sobyanin, V.A., Belyaev, V.D., Tsyrulnikov, P.G., Shitova, N.B., Shlyapin, D.A., 2003. Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru- and Pd-supported catalysts. Applied Catalysis A: General 239, 149-156. Sullivan, J.A., Cunningham, J., Morris, M.A., Keneavey, K., 1995. Conditions in which Cu-ZSM-5 outperforms supported vanadia catalysts in SCR of NOxby NH3. Applied Catalysis B: Environmental 7, 137-151. Taylor, K.C., 1993. Nitric Oxide Catalysis in Automotive Exhaust Systems. Catalysis Reviews: Science and Engineering 35, 457 - 481. Taylor, S.H., Hutchings, G.J., Mirzaei, A.A., 2003. The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Catalysis Today 84, 113-119. Tseng, H.H., Lin, H.Y., Kuo, Y.F., Su, Y.T., 2010. Synthesis, characterization, and promoter effect of Cu-Zn/γ-Al2O3 catalysts on NO reduction with CO. Chemical Engineering Journal 160, 13-19. Vernoux, P., Leinekugel-Le-Cocq, A.Y., Gaillard, F., 2003. Effect of the addition of Na to Pt/Al2O3 catalysts for the reduction of NO by C3H8 and C3H6 under lean-burn conditions. Journal of Catalysis 219, 247-257. Wang, S., Lu, G.Q., 1998. Effects of acidic treatments on the pore and surface properties of Ni catalyst supported on activated carbon. Carbon 36, 283-292. Wey, M.Y., Lu, C.Y., Tseng, H.H., Fu, C.H., 2002. The utilization of catalyst sorbent in scrubbing acid gases from incineration flue gas. Journal of the Air & Waste Management Association 52, 449-458. Willey, R.J., Eldridge, J.W., Kittrell, J.R., 1985. Mechanistic model of the selective catalytic reduction of nitric oxide with ammonia. Industrial & Engineering Chemistry Product Research and Development 24, 226-233. Yahiro, H., Iwamoto, M., 2001. Copper ion-exchanged zeolite catalysts in deNOx reaction. Applied Catalysis A: General 222, 163-181. Zhang, T.Y., Wang, S.P., Yu, Y., Su, Y., Guo, X.Z., Wang, S.R., Zhang, S.M., Wu, S.H., 2008. Synthesis, characterization of CuO/Ce0.8Sn0.2O2 catalysts for low-temperature CO oxidation. Catalysis Communications 9, 1259-1264. Zhao, Y., Zhu, J.J., Hong, J.M., Bian, N., Chen, H.Y., 2004. Microwave-Induced Polyol-Process Synthesis of Copper and Copper Oxide Nanocrystals with Controllable Morphology, pp. 4072-4080. Zhu, H.T., Zhang, C.Y., Yin, Y.S., 2004. Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. Journal of Crystal Growth 270, 722-728. Zhu, H., Liu, Y., Shen, L., Wei, Y., Guo, Z., Wang, H., Han, K., Chang, Z., 2010. Microwave heated polyol synthesis of carbon supported PtAuSn/C nanoparticles for ethanol electrooxidation. International Journal of Hydrogen Energy 35, 3125-3128. Zhu, Z., Liu, Z., Liu, S., Niu, H., Hu, T., Liu, T., Xie, Y., 2000. NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures. Applied Catalysis B: Environmental 26, 25-35. Zou, H., Chen, S., Lin, W., 2008. Effect of pretreatment methods on the performance of Cu-Zr-Ce-O catalyst for CO selective oxidation. Journal of Natural Gas Chemistry 17, 208-211.
觸媒具有降低反應活化能之優點,可於較低溫度環境下將污染物去除,而觸媒之催化活性受分散性與顆粒大小影響,因此本研究期望發展一簡單快速的觸媒製備方法,應用於淨化火力發電廠或焚化廠反應氣體及水氣轉換或重組碳氫化合物產生之合成氣之一氧化碳 (carbon monoxide, CO) 及氮氧化物 (Nitrogen oxides, NOX),發展潔淨發電技術。
本研究以微波多元醇法製備負載型銅觸媒,探討製備操作參數及擔體種類對觸媒形貌及催化活性之影響,亦與含浸法及多元醇法製備之觸媒比較催化活性,並輔以比表面積分析 (BET)、晶相分析 (XRD)、表面型態觀察 (FESEM)、元素成分分析 (EDS)、感應耦合電漿質譜分析 (ICPMS) 特性分析。
在微波多元醇法製備程序中,微波功率700瓦,微波加熱時間60秒,因為加熱時間短,不需另外添加保護劑即可獲得針狀且分散佳之銅顆粒,而使此觸媒具有高催化反應活性。而 pH 值為2及12之銅顆粒均勻分散於活性碳擔體上,反應溫度175 °C 即可達到極佳之催化活性。擔體選用上,活性碳擔體適用於火力發電廠及焚化廠使用過程中之 NO 還原(< 250 °C)及 CO 氧化反應;氧化鈰擔體可用於火力發電廠及焚化廠使用過程中之 NO 還原 (< 225 °C) 及燃料電池系統中富氫環境氧化 CO 反應;鈰鋯複合氧化物,隨鈰添加比例增加熱穩定性,適用於火力發電廠及焚化廠使用過程中之 NO 還原反應 (> 250 °C)。

Air pollutions can be removal by the catalysts at lower reaction temperature with lower activation energy. The catalytic activity is strongly depended on the dispersion and morphology (size and shape) of metal particles. The purpose of this study was to develop a simple and rapid method for preparation of supported copper catalysts. The catalyst preparation may be applied for removal of CO and NOx in the flue gas or syngas from power plants, incinerators, and reforming of hydrocarbons for development of clean power-generation technology.
This research was mainly focused on the preparation of supported copper catalysts through microwave polyol process. The effects of operation parameter and support type on morphology and performance of catalysts. In addition, the effects of various preparation methods for supported copper catalysts, namely, impregnation, polyol process, and microwave heated polyol process, on the activity of catalytic were compared. Characterization of catalyst was analyzed by using the techniques of Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and inductively coupled plasma mass spectroscopy (ICP-MS).
The results revealed that the nanoscaled copper particles were well dispersed, and the catalyst had high catalytic activity even without the addition of PVP was unnecessary in the extremely short preparation time of microwave heated polyol process. Experimental results indicated that a microwave power of 700W and a heated time of 60 s were highly effective, and that copper particles dispersed well on the support, even in the absence of the protecting agent poly-vinyl pyrrolidone (PVP). Supported copper catalyst prepared by microwave-assisted polyol process at the pH value of about 2 and 12 exhibits that copper particles dispersed well on the support. The supported copper catalyst shows excellent catalytic performance at 175 °C. Among different supports, activated carbon (AC)-supported catalysts showed the good removal efficiency of NO (< 250 °C) and CO in the flue gases of power plants and incinerators. For application of CeO2 support, CeO2-supported catalysts were successful used for NO removal in power plants and incinerator (< 225 °C) or selective oxidation of CO in excess hydrogen, separately. The thermal stability of CexZr1-XO2 increased with ratio of Zr/Ce. CexZr1-XO2-supported catalysts were suitable for NO removal in power plants and incinerator at high temperature (> 250 °C).
Among the preparation methods, the optimum preparation methods was in the order of microwave heated polyol process > polyol process > impregation method. The particle size, shape, and dispersion of supported copper catalysts were effective controlled by microwave heated polyol process. The microwave polyol process could quickly and easily synthesize the nano-metallic catalysts which could effectively remove the air pollutants for clean power-generation technology.
其他識別: U0005-3005201113013200
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.