Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5104
DC FieldValueLanguage
dc.contributor.advisor鄭曼婷zh_TW
dc.contributor.advisorMan Ting Chengen_US
dc.contributor.author張博彥zh_TW
dc.contributor.authorChang, Po Yanen_US
dc.date2005zh_TW
dc.date.accessioned2014-06-06T06:34:02Z-
dc.date.available2014-06-06T06:34:02Z-
dc.identifier.urihttp://hdl.handle.net/11455/5104-
dc.description.abstract本研究在2004年於中興大學進行全年每月一次大氣懸浮微粒粒徑分佈量測,採樣期間共有三次PM10高污染事件,各代表沙塵暴過境、農廢燃燒與擴散不良的典型案例。此研究除了分析各不同PM10高污染事件硫酸鹽、硝酸鹽、銨鹽、氯離子、鉀離子及鈣離子等粒徑分佈外,並彙整2002年至2004年六波沙塵暴的粒徑分佈量測結果,進一步探討沙塵暴對微粒氯損失的影響。 沙塵暴過境期間,主要帶來大量粗粒地殼物質,大氣中酸性氣體易與塵土微粒反應,使得硫酸鹽與硝酸鹽的粒徑分佈皆為明顯雙峰分佈,農廢燃燒期間,大氣中氯離子、鉀離子與硝酸鹽細粒明顯增加。關於氯損失,2002年至2004年沙塵暴事件日期間,氣膠平均氯損失為36.1%。相較於非事件日56.6%則減少20.5%,主要受沙塵微粒中豐富鈣成份與HNO3反應所影響。不同粒徑微粒分析得知氯損失隨粒徑減少而增加,因粒徑較小微粒有相對較大表面積。以r0 (=[Na+]/([Cl-]+[NO3-]))為氯損失指標與[Ca2+]/[Na+]及相對濕度RH值進行迴歸,所得經驗公式如r0 = 0.826 - 0.058 × RH - 0.275 × ([Ca2+]/[Na+])。當Ca2+濃度及相對濕度增加,則r0減少,顯示氣膠中Ca(NO3)2比例提高,造成氯損失減少。zh_TW
dc.description.abstractThe size distributions of ambient particulates were measured monthly in 2004 at Chung-Hsing University in Taichung city. During the sampling period, there were three PM10 episodes representing Asian dust storm event, rice straw waste burning event, and poor dispersion event. This study analyzed the size distributions of the soluble ions including sulfate, nitrate, ammonium, chloride, potassium, and calcium. In addition, the data of the six dust-storm episodes occurred from 2002 to 2004 were analyzed in order to investigate the dust effect on chloride depletion. During the Asian dust-storm period, a significant amount of crustal aerosols was observed. Since the acidic gases easily reacted with the dust particulates, sulfate and nitrate particulates appear as bi-modal size distribution. During the rice straw waste burning period, the chloride, potassium, and nitrate fine particles significantly increased. Regarding the chloride depletion, the average chloride depletion in aerosol was 36.1% during the Asian dust-storm period. Compared with 56.6% on ordinary days, it reduced 20.5% due to the reaction of HNO3 with the abundant calcium in the dust. Analyzing different size range particles, chloride depletion decreased with increasing particle size because of larger surface area of the smaller particles. Based on the experimental data, a regression equation of r0 (=[Na+]/([Cl-]+[NO3-])) was derived as r0 = 0.826 - 0.058 × RH - 0.275 × ([Ca2+]/[Na+]). r0 decreased with higher Ca2+ and relative humidity. It indicated the higher portion of Ca(NO3)2 causing less chloride depletion.en_US
dc.description.tableofcontents目錄 摘要 ......................................................... Ⅰ 目錄 ......................................................... III 表目錄 ....................................................... VII 圖目錄 ....................................................... IX 第一章 前言 .................................................. 1 1.1研究緣起 ................................................... 1 1.2研究目的 ................................................... 2 1.3研究方法 ................................................... 3 第二章 文獻回顧 .............................................. 4 2.1大氣懸浮微粒之來源及化學組成 ................................ 4 2.1.1懸浮微粒之來源及化學組成 .................................... 4 2.1.2 懸浮微粒之粒徑分布特性 ..................................... 6 2.1.3 懸浮微粒水溶性離子之粒徑分佈 ............................... 8 2.2大陸沙塵暴之特性 .......................................... 12 2.2.1沙塵暴來源及成因 ...................................... 12 2.2.2沙塵暴微粒特性相關研究 ................................. 13 2.2.3沙塵暴對台灣地區的影響 ................................. 15 2.3農廢燃燒污染源之特性 ....................................... 15 2.4氯損失 ................................................... 17 2.4.1氯損失機制 ............................................ 17 2.4.2氯損失影響因子 ........................................ 19 2.4.3氯損失指標值 .......................................... 22 第三章 實驗方法 .............................................. 23 3.1 採樣規劃 ................................................ 23 3.1.1採樣時間 ............................................. 23 3.1.2採樣地點之環境描述 .................................... 24 3.1.3採樣儀器 ............................................. 24 3.1.4濾紙處理程序 ......................................... 27 3.2水溶性陰陽離子分析方法 .................................... 29 第四章 結果與討論 ............................................ 32 4.1中部空氣品質概況 ......................................... 33 4.1.1 2002年至2004年中部地區空氣品質狀況........................ 33 4.1.2 2004年PM10事件原因分析.................................. 35 4.2 PM10觀測值和空品測站監測值之比較 ............................. 36 4.3大氣懸浮微粒質量濃度之變化分析 ................................ 40 4.4沙塵暴事件 ................................................. 42 4.4.1密集觀測期間氣象條件與空氣品質 ............................ 42 4.4.2質量濃度 ............................................... 44 4.4.3水溶性離子濃度 ......................................... 46 4.4.4水溶性離子粒徑分佈 ..................................... 48 4.5農廢燃燒事件 ................................................ 52 4.5.1密集觀測期間氣象條件與空氣品質 .......................... 52 4.5.2質量濃度 ............................................. 52 4.5.3水溶性離子濃度 ........................................ 55 4.5.4水溶性離子粒徑分佈 .................................... 58 4.6冬季高污染事件 ........................................... 62 4.6.1密集觀測期間氣象條件與空氣品質 ........................ 62 4.6.2質量濃度 ........................................... 64 4.6.3水溶性離子濃度 ...................................... 66 4.6.4水溶性離子粒徑分佈 ................................... 69 4.7沙塵暴期間氣膠氯損失及影響因子 ............................ 73 4.7.1 Na+與Cl-相關性 ........................................ 75 4.7.2沙塵暴期間氯損失 ........................................ 76 4.7.3鈣離子濃度對氯損失影響 ................................... 78 4.7.4 2004年二月沙塵暴氯損失分析 .............................. 82 4.7.4.1比較計算r0值與0.85誤差.................................82 4.7.4.2氯損失...............................................83 第五章 結論與建議 ........................................... 87 5.1沙塵暴事件懸浮微粒特性及粒徑分佈 ........................... 87 5.2農廢燃燒事件懸浮微粒特性及粒徑分佈 ........................... 88 5.3冬季高污染事件懸浮微粒特性及粒徑分佈 ........................... 88 5.4氣膠氯損失及其影響因子 ....................................... 89 5.5建議 ...................................................... 90 參考文獻 附錄一 2004年中部地區各空氣品質監測站PSI值統計表 附錄二 水溶性陰陽離子粒徑分佈圖 附錄三 研究相關數據zh_TW
dc.language.isoen_USzh_TW
dc.publisher環境工程學系zh_TW
dc.subjectchloride depletionen_US
dc.subject沙塵暴zh_TW
dc.subjectrelative humidityen_US
dc.subject[Ca2+]/[Na+]en_US
dc.subjectdust stormen_US
dc.subject粒徑zh_TW
dc.subject硝酸鹽zh_TW
dc.subject氯損失zh_TW
dc.subject[Ca2+]/[Na+]zh_TW
dc.subject農廢燃燒zh_TW
dc.title台中都會區大氣懸浮微粒粒徑分佈與氯損失之研究zh_TW
dc.titleA study of particulate size distributions and chloride depletion in Taichung urban areaen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:環境工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.