Please use this identifier to cite or link to this item:
標題: 銨鹽之生成對煙道氣中一氧化氮、二氧化硫及飛灰去除效率之影響
The effect of the ammonium salts on the removal efficiency of NO, SO2 and fly ash in simulated flue gas
作者: 洪文宗
Hung, Wen-Tsung
關鍵字: Fluidized-bed catalyst reactor;流體化床;Catalyst;NO;SO2;Fly ash;Ammonium salts;觸媒;NO;SO2;飛灰;銨鹽
出版社: 環境工程學系所
引用: 毛健雄. (2000). "媒的清潔燃燒." 科學出版社. 林建弘. (1991). "銅觸媒活性中心之研究." 國立中山大學環境化學研究所 碩士論文. 陳福江. (2003). "日本的煙氣脫硫脫硝技術." 中日能源夥伴論壇,潔淨媒技術研討會論文集:198-202 黃世騰. (2010). "改質觸媒應用於流體化床反應器同時控制一氧化氮及飛灰之研究." 國立中興大學環境工程系,碩士論文,2010. 董曉紅. (2008). "火電廠煙氣脫硝技術." 內蒙古環境科學 第20卷(第一期). 劉光宇. (2006). "氣固式流體化床過濾粒狀污染物的動態變化與影響參數之研究." 國立中興大學環境工程系,博士論文,2006. 蔣博欽. (2001). "流體化床反應器控制煙道氣中粒狀污染物." 國立中興大學環境工程系,博士論文,2001. A. John Chandler, Taylor Eighmy, Jan Hartl Ole Hjelmar David, and S. Kosson Steven (1997). Chapter 8 - Fate of elements during incineration. Studies in Environmental Science, Elsevier. Volume 67: 263-337. Aguado, S., J. Coronas and J. Santamar (2005). "Use of Zeolite Membrane Reactors for the Combustion of VOCs Present in Air at Low Concentrations." Chemical Engineering Research and Design 83(3): 295-301. AkIn, A. N., G. Kilaz, A. I. Isli and Z. I. san (2001). "Development and characterization of Pt-SnO2/γ-Al2O3 catalysts." Chemical Engineering Science 56(3): 881-888. Aksoylu, A. E., M. Madalena, A. Freitas, M. F. R. Pereira and J. L. Figueiredo (2001). "The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts." Carbon 39(2): 175-185. Al-zahrani, A. A. (2000). "Particle size distribution in a continuous gas-solid fluidized bed." Powder Technology 107(1-2): 54-59. Avellaneda, R. S., S. Ivanova, O. Sanz, F. Romero-Sarria, M. A. Centeno and J. A. Odriozola (2009). "Ionic liquid templated TiO2 nanoparticles as a support in gold environmental catalysis." Applied Catalysis B: Environmental 93(1-2): 140-148. Benoit, G., S. D. Oktay-Marshall, A. Cantu, E. M. Hood, C. H. Coleman, M. O. Corapcioglu and P. H. Santschi (1994). "Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filter-retained particles, colloids, and solution in six Texas estuaries." Marine Chemistry 45(4): 307-336. Bogatyrev, V. M., V. M. Gun''ko, M. V. Galaburda, M. V. Borysenko, V. A. Pokrovskiy, O. I. Oranska, E. V. Polshin, O. M. Korduban, R. Leboda and J. Skubiszewska-Zieba (2009). "Synthesis and characterization of Fe2O3/SiO2 nanocomposites." Journal of Colloid and Interface Science 338(2): 376-388. Bosko, M. L., D. Yepes, S. Irusta, P. Eloy, P. Ruiz, E. A. Lombardo and L. M. Cornaglia (2007). "Characterization of Pd-Ag membranes after exposure to hydrogen flux at high temperatures." Journal of Membrane Science 306(1-2): 56-65. Boyano, A., M. C. Iritia, I. Malpartida, M. A. Larrubia, L. J. Alemany, R. Moliner and M. J. Laro (2008). "Vanadium-loaded carbon-based monoliths for on-board NO reduction: Influence of nature and concentration of the oxidation agent on activity." Catalysis Today 137(2-4): 222-227. Boyano, A., M. J. Lazaro, C. Cristiani, F. J. Maldonado-Hodar, P. Forzatti and R. Moliner (2009). A comparative study of V2O5/AC and V2O5/Al2O3 catalysts for the selective catalytic reduction of NO by NH3, Elsevier. 149: 173-182. Brostrom, M., H. Kassman, A. Helgesson, M. Berg, C. Andersson, R. Backman and A. Nordin (2007). "Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler." Fuel Processing Technology 88(11-12): 1171-1177. Chang, C. N., Y. S. Ma and C. W. Lo (2002). A practical scale evaluation of sulfated V2O5/TiO2 catalyst from metatitanic acid for selective catalytic reduction of NO by NH3. 4: 17. Chavadej, S., K. Saktrakool, P. Rangsunvigit, L. L. Lobban and T. Sreethawong (2007). "Oxidation of ethylene by a multistage corona discharge system in the absence and presence of Pt/TiO2." Chemical Engineering Journal 132(1-3): 345-353. Cheng, C. M., P. Hack, P. Chu, Y. N. Chang, T. Y. Lin, C. S. Ko, P. H. Chiang, C. C. He, Y. M. Lai and W. P. Pan (2009). "Partitioning of Mercury, Arsenic, Selenium, Boron, and Chloride in a Full-Scale Coal Combustion Process Equipped with Selective Catalytic Reduction, Electrostatic Precipitation, and Flue Gas Desulfurization Systems." Energy & Fuels 23: 4805-4816. Chiang, B.-C., M.-Y. Wey and C.-L. Yeh (2003). "Control of acid gases using a fluidized bed adsorber." Journal of Hazardous Materials 101(3): 259-272. Despr, J., M. Elsener, M. Koebel, O. Krher, B. Schnyder and A. Wokaun (2004). "Catalytic oxidation of nitrogen monoxide over Pt/SiO2." Applied Catalysis B: Environmental 50(2): 73-82. Fejes, P., I. Kiricsi, K. L, I. Marsi, A. Rockenbauer, L. Korecz, J. B. Nagy, R. Aiello and F. Testa (2003). "Attempts to produce uniform Fe(III) siting in various Fe-content ZSM-5 zeolites: Determination of framework/extra-framework ratio of Fe(III) in zeolites by EPR and Msbauer spectroscopy." Applied Catalysis A: General 242(2): 247-266. Figueiredo, J. L., M. F. R. Pereira, M. M. A. Freitas and J. J. M. Orfao (1999). "Modification of the surface chemistry of activated carbons." Carbon 37(9): 1379-1389. Fino, D., N. Russo, G. Saracco and V. Specchia (2004). "A multifunctional filter for the simultaneous removal of fly-ash and NOx from incinerator flue gases." Chemical Engineering Science 59(22-23): 5329-5336. Gailvez, M. E. and M. J. Lazaro (2005). "Novel activated carbon-based catalyst for the selective catalytic reduction of nitrogen oxide." Catalysis Today 102-103: 142-147. Galvez, J., M. E. Rodriguez Cabezas and A. Zarzuelo (2005). "Effects of dietary fiber on inflammatory bowel disease." Molecular nutrition & food research 49(6): 601-608. Gao, S., N. Nakagawa, K. Kato, M. Inomata and F. Tsuchiya (1996). "Simultaneous SO2/NOx removal by a powder-particle fluidized bed." Catalysis Today 29(1-4): 165-169. Garron, A., K. L and F. Epron (2005). "Effect of the support on tin distribution in Pd-Sn/Al2O3 and Pd-Sn/SiO2 catalysts for application in water denitration." Applied Catalysis B: Environmental 59(1-2): 57-69. Geldart, D. and D. Geldhart (1986). Gas fluidization technology, John Wiley & Sons New York. Harrison, R. M. and C. A. Pio (1983). "Size-differentiated composition of inorganic atmospheric aerosols of both marine and polluted continental origin." Atmospheric Environment (1967) 17(9): 1733-1738. Hsieh, Y. F. (2003). "Preliminary study on the destruction of gaseous PCDD/Fs with SCR catalyst." Hsu, M. T. (2009). "Preparation of Zn/Fe, Zn/Cu and Fe/Cu bimetal embedded carbon supported catalyst and their application for catalytic NOX reduction." Huang, Z., Z. Zhu and Z. Liu (2002). "Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures." Applied Catalysis B: Environmental 39(4): 361-368. Huang, Z., Z. Zhu and Z. Liu (2002). Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures, Elsevier. 39: 361-368. Huang, Z., Z. Zhu, Z. Liu and Q. Liu (2003). "Formation and reaction of ammonium sulfate salts on V2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures." Journal of Catalysis 214(2): 213-219. Hwang, W. J. (2001). "Simultanion of Recovering and Concentrating SO2 from Flue Gas by Multi-bed Pressure Swing Adsorption." Irfan, M. F., S. D. Kim and M. R. Usman (2009). "Modeling of NO Removal over CuO/£^-Al2O3 Catalyst in a Bubbling Fluidized Bed Reactor." Industrial & Engineering Chemistry Research 48(17): 7959-7964. Jeong, S. M. and S. D. Kim (2000). "Removal of NOX and SO2 by CuO/γ-Al2O3 Sorbent/Catalyst in a Fluidized-Bed Reactor." Industrial & Engineering Chemistry Research 39(6): 1911-1916. Jiang, J., Y. Li and W. Cai (2008). "Experimental and mechanism research of SO2 removal by cast iron scraps in a magnetically fixed bed." Journal of Hazardous Materials 153(1-2): 508-513. Jiang, X., L. Zhou, J. Liu and X. Han (2009). "A model on attrition of quartzite particles as a bed material in fluidized beds." Powder Technology 195(1): 44-49. Kato, J. L. K. (2001). A correlatio of the elutriation rate constant for adhesion particles (group C particles). 118: 209-218. Kobayashi, M. and M. Hagi (2006). "V2O5-WO3/TiO2-SiO2-SO42-catalysts: Influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2." Applied Catalysis B: Environmental 63(1-2): 104-113. Koebel, M. (2001). "Reaction Pathways in the Selective Catalytic Reduction Process with NO and NO2 at Low Temperatures." Industrial & Engineering Chemistry Research 40(1): 52-59. Kuo, J. T., J. Smid, S. S. Hsiau, C. Y. Wang and C. S. Chou (1998). Stagnant zones in granular moving bed filters for flue gas cleanup, Elsevier. 35: 529-534. Lee, I.-Y., D.-W. Kim, J.-B. Lee and K.-O. Yoo (2002). "A practical scale evaluation of sulfated V2O5/TiO2 catalyst from metatitanic acid for selective catalytic reduction of NO by NH3." Chemical Engineering Journal 90(3): 267-272. Lietti, L., J. Svachula, P. Forzatti, G. Busca, G. Ramis and P. Bregani (1993). "Surface and catalytic properties of Vanadia-Titania and Tungsta-Titania systems in the Selective Catalytic Reduction of nitrogen oxides." Catalysis Today 17(1-2): 131-139. Lin, W. H. (2009). " Evaluation of the Acid Gas Removals from Municipal Waste Incineration Processes." Lisovskii, A., R. Semiat and C. Aharoni (1997). "Adsorption of sulfur dioxide by active carbon treated by nitric acid: I. Effect of the treatment on adsorption of SO2 and extractability of the acid formed." Carbon 35(10-11): 1639-1643. Lisovskii, A., G. Shter, R. Semiat and C. Aharoni (1997). "Adsorption of sulfur dioxide by active carbon treated by nitric acid: II. Effect of preheating on the adsorption properties." Carbon 35(10-11): 1645-1648. Liu, K.-Y. and M.-Y. Wey (2005). "Dynamic purification of coal ash by a gas-solid fluidized bed." Chemosphere 60(10): 1341-1348. Liu, K.-Y. and M.-Y. Wey (2007). "Filtration of nano-particles by a gas-solid fluidized bed." Journal of Hazardous Materials 147(1-2): 618-624. Liu, Q., Z. Liu and Z. Huang (2005). "CuO Supported on Al2O3-Coated Cordierite-Honeycomb for SO2 and NO Removal from Flue Gas: Effect of Acid Treatment of the Cordierite." Industrial & Engineering Chemistry Research 44(10): 3497-3502. Liu, Q., Z. Liu, Z. Huang and G. Xie (2004). A honeycomb catalyst for simultaneous NO and SO2 removal from flue gas: preparation and evaluation, Elsevier. 93: 833-837. Liu, Y. and D. Sun (2007). "Development of Fe2O3-CeO2-TiO2/γ-Al2O3 as catalyst for catalytic wet air oxidation of methyl orange azo dye under room condition." Applied Catalysis B: Environmental 72(3-4): 205-211. Liu, Z.-S. (2008). "Adsorption of SO2 and NO from incineration flue gas onto activated carbon fibers." Waste Management 28(11): 2329-2335. Llop, M. F., J. Casal and J. Arnaldos (2000). "Expansion of gas-solid fluidized beds at pressure and high temperature." Powder Technology 107(3): 212-225. Lu, C.-Y. and M.-Y. Wey (2007). "Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas." Fuel Processing Technology 88(6): 557-567. Lu, C.-Y., M.-Y. Wey and Y.-H. Fu (2008). "The size, shape, and dispersion of active sites on AC-supported copper nanocatalysts with polyol process: The effect of precursors." Applied Catalysis A: General 344(1-2): 36-44. Lu, K. Y. and M. Y. Wey (2007). "Filtration of fly ash using fluidized bed at 300-500 degrees C." Fuel 86(1-2): 161-168. M Koebel, M. E. (2001). "Reaction Pathways in the Selective Catalytic Reduction Process with NO and NO2 at Low Temperatures." Industrial & Engineering Chemistry Research 40(1): 51-59. Ma, J., Z. Liu, Q. Liu, S. Guo, Z. Huang and Y. Xiao (2007). "SO2 and NO removal from flue gas over V2O5/AC at lower temperatures — role of V2O5 on SO2 removal." Fuel Processing Technology. Matsumoto, K. and H. Tanaka (1996). "Formation and dissociation of atmospheric particulate nitrate and chloride: an approach based on phase equilibrium." Atmospheric Environment 30(4): 639-648. Mochida, I., Y. Korai, M. Shirahama, S. Kawano, T. Hada, Y. Seo, M. Yoshikawa and A. Yasutake (2000). "Removal of SOx and NOx over activated carbon fibers." Carbon 38(2): 227-239. Muzio, L. J., G. C. Quartucy and J. E. Cichanowiczy (2002). Overview and status of post-combustion NO x control: SNCR, SCR and hybrid technologies, Inderscience. 17: 4-30. Pan, C. (2005). "Study on the Fuel NOx Formation for Oxidation of Air-Borne Nitrogen-Containing VOC by Regenerative Thermal Oxidizer." Park, Y.-O., K.-W. Lee and Y.-W. Rhee (2009). "Removal characteristics of nitrogen oxide of high temperature catalytic filters for simultaneous removal of fine particulate and NOx." Journal of Industrial and Engineering Chemistry 15(1): 36-39. Perera, S. and D. G. Schowalter (2006). "A SOx Formation Model for Industrial CFD Applications." Pindoria, R. V., A. Megaritis, A. A. Herod and R. Kandiyoti (1998). A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass: effect of catalyst temperature, pressure and catalyst ageing time on product characteristics, Elsevier. 77: 1715-1726. Querol, X., N. Moreno, J. C. Umana, A. Alastuey, E. Hernandez, A. Lopez-Soler and F. Plana (2002). Synthesis of zeolites from coal fly ash: an overview, Elsevier. 50: 413-423. Radojevic, M. (1998). "Reduction of nitrogen oxides in flue gases." Environmental Pollution 102(1, Supplement 1): 685-689. Rasul, M., V. Rudolph and F. Wang (2000). "Particles separation using fluidization techniques." International journal of mineral processing 60(3-4): 163-179. Rau, J. Y., J. C. Chen, M. D. Lin and M. Y. Wey (2010). "Removal the Coal Ash, NO, and SO2 Simultaneously by the Fluidized-Bed Catalyst Reactor." Energy & Fuels 24: 1711-1719. Rau, J. Y., J. C. Chen, M. Y. Wey and M. D. Lin (2009). "Effects of H2O and Particles on the Simultaneous Removal of SO2 and Fly Ash Using a Fluidized-Bed Sorbent/Catalyst Reactor." Industrial & Engineering Chemistry Research 48(23): 10541-10550. Rau, J. Y., H. H. Tseng, B. C. Chiang, M. Y. Wey and M. D. Lin (2010). "Evaluation of SO2 oxidation and fly ash filtration by an activated carbon fluidized-bed reactor: The effects of acid modification, copper addition and operating condition." Fuel 89(3): 732-742. Ray, Y. C., T. S. Jiang and C. Wen (1987). "Particle attrition phenomena in a fluidized bed." Powder Technology 49(3): 193-206. Rodriguez-Reinoso, F. (1998). "The role of carbon materials in heterogeneous catalysis." Carbon 36(3): 159-175. Rodriguez, J. M., J. R. Sanchez, A. Alvaro, D. F. Florea and A. M. Estevez (2000). Fluidization and elutriation of iron oxide particles. A study of attrition and agglomeration processes in fluidized beds, Powder Technol. 111: 218-230. Saracco, G. and V. Specchia (1998). Simultaneous removal of nitrogen oxides and fly-ash from coal-based power-plant flue gases, Elsevier. 18: 1025-1035. Seinfeld, J. H., S. N. Pandis and Knovel (1998). "Atmospheric chemistry and physics: from air pollution to climate change." Seville, J. P. K. and R. Clift (1997). Gas cleaning in demanding applications, Blackie Academic & Professional Glasgow, UK. Smolders, K. and J. Baeyens (1997). Elutriation of fines from gas fluidized beds: mechanisms of elutriation and effect of freeboard geometry, Lausanne: Elsevier Sequoia, 1967-. 92: 35-46. Snip, O. C., M. Woods, R. Korbee, J. C. Schouten and C. M. Van den Bleek (1996). Regenerative removal of SO2 and NOx for a 150 MWe power plant in an interconnected fluidized bed facility, Elsevier. 51: 2021-2029. Stelson, A. and J. Seinfeld (1982). "Relative humidity and temperature dependence of the ammonium nitrate dissociation constant." Atmospheric Environment (1967) 16(5): 983-992. Suarez, S., S. M. Jung, P. Avila, P. Grange and J. Blanco (2002). Influence of NH3 and NO oxidation on the SCR reaction mechanism on copper/nickel and vanadium oxide catalysts supported on alumina and titania, Elsevier. 75: 331-338. Teng, H., L.-Y. Hsu and Y.-C. Lai (2001). "Catalytic Reduction of NO with NH3 over Carbons Impregnated with Cu and Fe." Environmental Science & Technology 35(11): 2369-2374. Topsoe, N., J. Dumesic and H. Topsoe (1995). "Vanadia-Titania Catalysts for Selective Catalytic Reduction of Nitric-Oxide by Ammonia II Studies of Active Sites and Formulation of Catalytic Cycles." Journal of Catalysis 151(1): 241-252. Tran, K.-Q., P. Kilpinen and N. Kumar (2008). "In-situ catalytic abatement of NOx during fluidized bed combustion--A literature study." Applied Catalysis B: Environmental 78(1-2): 129-138. Tran, K. Q., P. Kilpinen and N. Kumar (2007). Opportunities to Utilize Process Waste and Ash for Development of Low-NOx Bed Materials for FBC Plants. Tseng, H.-H. and M.-Y. Wey (2006). "Effects of acid treatments of activated carbon on its physiochemical structure as a support for copper oxide in DeSO2 reaction catalysts." Chemosphere 62(5): 756-766. Tseng, H.-H., M.-Y. Wey, Y.-S. Liang and K.-H. Chen (2003). "Catalytic removal of SO2, NO and HCl from incineration flue gas over activated carbon-supported metal oxides." Carbon 41(5): 1079-1085. Ueda, T., K. Nakamura and Y. Fukushima (2000). Method for fabricating semiconductor nanocrystal and semiconductor memory device using the semiconductor nanocrystal, Google Patents. Ulerich, N., W. Vaux, R. Newby and D. Keairns (1980). Experimental/engineering support for environmental protection agencies fluidized-bed combustion (fbc) program: final report. Volume I. Sulfur oxide control. Final report Dec 75-Dec 78, Westinghouse Research and Development Center, Pittsburgh, PA (USA). Utsunomiya, A. and S. Wakamatsu (1996). "Temperature and humidity dependence on aerosol composition in the northern Kyushu, Japan." Atmospheric Environment 30(13): 2379-2386. Wall, S. M., W. John and J. L. Ondo (1988). "Measurement of aerosol size distributions for nitrate and major ionic species." Atmospheric Environment (1967) 22(8): 1649-1656. Wallin, M., S. Forser, P. Thormahlen and M. Skoglundh (2004). "Screening of TiO2-supported catalysts for selective NOx reduction with ammonia." Industrial & Engineering Chemistry Research 43(24): 7723-7731. Wen, C. Y. a. Y., Y. H., (1966). "Mechanics of Fluidization." Chem. Eng. Progr. Symp. Ser. 62(No. 62): 100-111. Wey, M.-Y., K.-H. Chen and K.-Y. Liu (2005). "The effect of ash and filter media characteristics on particle filtration efficiency in fluidized bed." Journal of Hazardous Materials 121(1-3): 175-181. Wu, S. Y. a. B., J., (1991). "Effect of operating temperature on minimum fluidization velocity." Powder Technol Vol. 67: 217-220. Wu, Z., Z. Sheng, Y. Liu, H. Wang, N. Tang and J. Wang (2009). "Characterization and activity of Pd-modified TiO2 catalysts for photocatalytic oxidation of NO in gas phase." Journal of Hazardous Materials 164(2-3): 542-548. Xie, G., Z. Liu, Z. Zhu, Q. Liu, J. Ge and Z. Huang (2004). "Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent: II. Promotion of SCR activity by SO2 at high temperatures." Journal of Catalysis 224(1): 42-49. Xing, X., Z. Liu and J. Yang (2008). "Mo and Co doped V2O5/AC catalyst-sorbents for flue gas SO2 removal and elemental sulfur production." Fuel 87(8-9): 1705-1710. Xuan, X., C. Yue, S. Li and Q. Yao (2003). Selective catalytic reduction of NO by ammonia with fly ash catalyst* 1, Elsevier. 82: 575-579. Xue, Y., G. Lu, Y. Guo, Y. Guo, Y. Wang and Z. Zhang (2008). Effect of pretreatment method of activated carbon on the catalytic reduction of NO by carbon over CuO, Elsevier. 79: 262-269. Xue, Y. Y., Y. Guo, Z. G. Zhang, Y. L. Guo, Y. Q. Wang and G. Z. Lu (2008). "The role of surface properties of activated carbon in the catalytic reduction of NO by carbon." Applied Surface Science 255(5): 2591-2595. Xue, Y. Y., G. Z. Lu, Y. Guo, Y. L. Guo, Y. Q. Wang and Z. G. Zhang (2008). "Effect of pretreatment method of activated carbon on the catalytic reduction of NO by carbon over CuO." Applied Catalysis B-Environmental 79(3): 262-269. Zhu, Z. (2001). "Mechanism of SO2 Promotion for NO Reduction with NH3 over Activated Carbon-Supported Vanadium Oxide Catalyst." Journal of Catalysis 197(1): 6-16. Zhu, Z., Z. Liu, S. Liu, H. Niu, T. Hu, T. Liu and Y. Xie (2000). "NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures." Applied Catalysis B: Environmental 26(1): 25-35. Zhu, Z. H., L. R. Radovic and G. Q. Lu (2000). "Effects of acid treatments of carbon on N2O and NO reduction by carbon-supported copper catalysts." Carbon 38(3): 451-464.
本研究以模擬煙道氣中之環境,本研究使用流體化觸媒床反應器同時控制一氧化氮(NO)、二氧化硫(SO2)及飛灰(Fly ash)之去除,並同時對銨鹽之生成做進一步之探討。其中探討的主要內容包含:(1)單一污染物於不同反應溫度及不同濃度下對於去除效率之影響;(2)兩種污染物共存時於不同反應溫度下對去除效率之影響;(3)三種污染物共存時於不同反應溫度下對去除效率之影響;(4)於不同反應時間下對三種污染物同時去除之影響;(5)不同反應條件下對銨鹽生成之影響。並利用FE-SEM、BET、XRD以及IC等儀器進行反應前後觸媒之特性分析。
本研究以含浸法製備CuO/AC觸媒進行反應,研究結果顯示,流體化觸媒反應器對於(1)單一污染物的控制,當溫度在250 ℃時,去除效率分別為:NO:58%、SO2:78%、飛灰:79%;當反應氣體組成為(2)NO+SO2或NO+飛灰時,觸媒對NO的去除效率會下降,可能原因為反應過程中飛灰或是生成之銨鹽阻塞觸媒孔洞或是覆蓋住觸媒之活性相,導致去除效率下降;於不同反應溫度下,(3)反應氣體組成為NO+SO2 +飛灰時,當溫度於250 ℃時可得較佳的去除效率,分別為:NO:53%、SO2:95%、飛灰:80%;於不同操作時間下溫度在250 ℃時,當操作時間大於180分鐘時,可發現去除效率隨時間增加而有明顯的下降趨勢。在銨鹽生成的探討中,可發現當流體化觸媒反應器中之觸媒表面生成之銨鹽越多時會降低污染物的去除效率; NO和SO2會與反應器中之還原劑NH3於觸媒表面上反應生成(NH4)2SO4、NH4HSO4、NH4NO3,同時觸媒表面之銨鹽亦將隨著反應時間增加而增多。

In this study, a fluidized-bed catalyst reactor was applied for the simultaneous removal of NO, SO2, and fly ash in simulated flue gas of the coal-fired power plant. Moreover, the formation of the ammonium salts was also studied. The objects of this study included: (1) study the effects of reaction temperatures and reaction concentrations on the removal efficiency in the presence of one kind of pollutant; (2) study the effect of reaction temperatures on the removal efficiency in the presence of both NO and SO2 or NO and fly ash; (3) study the effect of reaction temperatures on the removal efficiency in the presence of three kinds of pollutants (NO+SO2+fly ash); (4) study the effects of reaction times on the removal efficiency in the presence of three kinds of pollutants; (5) study the formation of the ammonium salts in the different reaction conditions. The catalysts were characterized by the field emission scanning electron microscopy(FESEM), Brunauer Emmett Teller(BET), X-ray powder diffraction(XRD), and Ion Chromatography(IC).
In the experiment, CuO/AC catalyst was prepared by the impregnation for catalytic reaction. The experimental results showed that the removal efficiency over a fluidized-bed catalyst reactor in the presence of one kind of pollutant was 58%, 78%, and 79% for NO, SO2, and fly ash, separately. NO removal efficiency was decreased due to the covered active sites or blocked pores by fly ash or formed ammonium salts in the presence of both NO and SO2 or NO and fly ash. In the presence of three kinds of pollutants, the removal efficiency was studied as a function of reaction temperature. The good catalytic activity was carried out at 250℃, and the removal efficiency was 53%, 95%, and 80% for NO, SO2, and fly ash, separately. In order to study the effect of operating time on the pollutants removal, the reaction temperature was set at 250℃. The results indicated that all pollutant removal efficiencies were obviously decreased with operating time increased after 180min. In the study of formation of the ammonium salts, the experiment results indicated that the pollutant removal efficiency was decreased with a large number of the ammonium salts formed on the catalyst surface in a fluidized-bed catalyst reactor. In the catalyst reactor, ammonia may react with NO and SO2, and then the ammonia salts, (NH4)2SO4, NH4HSO4 and NH4NO3, were accumulated on the catalyst surface. Furthermore, the number of formation of the ammonium salts was increased with operating time increased.
其他識別: U0005-3006201113422000
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.