Please use this identifier to cite or link to this item:
標題: 台中都會區氣態亞硝酸污染物之觀測及生成機制的分析
Observations of HNO2 Gaseous Pollutant and the Analysis of Formation Mechanisms in Taichung Urban City
作者: 陳淑萍
Chen, Shu-Ping
關鍵字: Nitrous acid;亞硝酸;heterogeneous mechanisms;conversion ratio;異相反應機制;轉換比例
出版社: 環境工程學系所
引用: 1.Akira, U. and W. Shinji., “Temperature and Humidity Dependence on Aerosol Composition in the Northern Kyushu Japan,” Atmospheric Environment, Vol. 30, pp. 2379-2386 (1996). 2.Allegrini, I., A. Febo, C. Perrion and P.Masia, “Measurement of Atmospheric Nitric Acid Gas Phase and Nitrate in Particulate Matter by Means of Annular Denuder,” International Journal of Environmental Analytical Chemistry, Vol. 54, pp. 183-201 (1993). 3.Ammann, M., M. Kalberer, D. T. Jost, L. Tobler, E. Rossler, D. Plguet, H. W. Gaggeler and U. Baltensperger, “Heterogeneous Production of Nitrous Acid on Soot in Polluted Air Masses,” Nature, Vol. 395, pp. 157-160 (1998). 4.Atkinson, R., D. L. Baulch, R. A. Cox, R. F. Hampso, J. A. Kerr and J. Troe, “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry Supplement IV,” Journal of Physical and Chemical Reference Data, Vol 21(6), pp. 1126-1556 (1992). 5.Bai, H., C. Li, K. F. Chang and G. C. Fang, “Sources of sampling error for field measurement of nitric acid gas by a denuder system,” Atmospheric Environment, Vol 37, pp. 941-947 (2003). 6.Bari, A., V. Ferraro, L. R. Wilson, D. Luttinger and L. Husain, “Measurements of Gaseous HONO, HNO3, SO2, HCl, NH3, Particulate Sulfate and PM2.5 in New York, NY,” Atmospheric Environment, Vol. 37, pp. 2825-2835 (2003). 7.Chan, W. H., R. J. Nordstrom, J. G. Calvert and J. H. Shaw, “Kinetic Study of HONO Formation and Decay Reactions Ingaseous Mixtures of HONO,NO,NO2,H2O,and N2,” Environmental Science & Technology, Vol. 10, pp. 674-682 (1976). 8.Chio, C. P., M. T. Cheng and C. F. Wang, “Soure Apportonment to PM10 in Different Air Quality Conditions for Taichung Urban and Coastal Areas, Taiwan,” Atmospheric Environment, Vol. 38, pp. 6893 -6905 (2004). 9.Chow, J. C., J. G. Watson, Z. Lu, D. H. Lowenthal, C. A. Frazier, P. A. Solomon, R. H. Thuillier and K. Magliano, “Descriptive Analysis of PM2.5 and PM10 at Regionally Representative Locations During SJVAQS/AUSPEZ,” Atmospheric Environment, Vol. 30, pp. 2079 -2112 (1996). 10.Danalatos, D. and S. Glavas, “Gas Phase Nitric Acid, Ammonia and Related Particulate Matter at a Mediterranean Coastal Site, Patras, Greece,” Atmospheric Environment, Vol. 33, pp. 3417-3425 (1999). 11.Danalatos, D., S. Glavas and H. Kambezidis, “Atmospheric Nitric Acid Concentrations in a Mediterran Site, Patras, Greece,” Atmospheric Environment, Vol. 29, pp. 1849-1852 (1995). 12.Day, D. E., W. C. Malm and S. M. Kreidenweis, “Seasonal Variations in Aerosol Composition and Acidity at Shenandoah and Great Smoky Mountains National Parks,” Journal of the Air & Waste Management Association, Vol. 47, pp. (1997). 13.Eatough, N. L., S. McGreger, E. A. Lewis, D. J. Eatough, A. A. Huang and E. C. Ellis, “Comparison of Six Denuder Methods and a Filter Pack for the Collection of Ambient HNO3(g), HNO2(g), SO2(g) in 1985 NSMC Study,” Atmospheric Environment, Vol. 22, pp. 1601 -1618 (1998). 14.Erduran, M. S. and S. G. Tuncel, “Gaseous and Particulate Air Pollutants in the Northeastern Mediterranean Coast,” The Science of the Total Environment, Vol. 281, pp. 205-215 (2001). 15.Ferm, M., “A Na2CO3-Coated Denuder and Filter for Determination of Gaseous HNO3 and Particulate NO3- in the Atmosphere,” Atmospheric Environment, Vol. 20, pp. 1193-1201 (1986). 16.Fraser, M. P. and Cass, G. R., “Detection of Excess Ammonia Emissinos from In-use Vehicles and the Implications for Fine Partice Control,” Envirnmental Science and Technology, Vol. 32, pp. 1053-1057 (1998). 17.Harris, G. W., W. P. L. Carter, A. M. Winer and J. N. Pitts, “Observations of Nitrous Acid in the Los Angeles Atmosphere and Implications for Predictions of Ozone-Precursor Relationships,” Environmental Science & Technology, Vol. 16, pp. 414-419 (1982). 18.Harrison, R. M. and A. M. N. Kitto, “Evidence for a Surface Source of Atmospheric Nitrous Acid,” Atmospheric Environment, Vol. 28, pp. 1089-1094 (1994). 19.Hoek, G., M. G. Mennen, G. A. Allen, P. Hofschreuder and T. V. D. Meulen, “Concentration of Acidic Air Pollutants in the Netherlands,” Atmospheric Environment, Vol. 30, pp. 3141-3150 (1996). 20.Jacobson, M. Z., Fundamentals of Atmospheric Modeling, Cambridge University Press, New York, pp. 592-599 (1999). 21.Kadowaki, S., “On the Nature of Atmospheric Oxidation Processes of SO2 to Sulfate and of NO2 to Nitrate on the Basis of Diurnal Variations of Sulfate, Nitrate, and other Pollutants in an Urban Area,” Environmental Science & Technology, Vol. 20, pp. 1249-1253 (1986). 22.Khoder, M. I., “Atmospheric Conversion of Sulfur Dioxide to Particulate Sulfate and Nitrogen Dioxide to Particulate Nitrate and Gaseous Nitric Acid in an Urban Area,” Chemosphere, Vol. 49, pp. 675-684 (2002). 23.Kleffmann, J., K. H. Becker and P. Wiesen, “Heterogeneous NO2 Conversion Processes on Acid Surfaces: Possible Atmospheric Implications ” Atmospheric Environment, Vol. 32, pp. 2721-2729 (1998). 24.Kurtenbach, R., K. H. Becker, J. A. G. Gomes, J. Klrffmann, J. C. Lorzer, M. Spittler, P. Wiesen, R. Ackermann, A. Geyer and U. Platt, “Investigations of Emissions and Heterogeneous Formation of HONO in a Road Traffic Tunnel,” Atmospheric Environment, Vol. 35, pp. 3385 -3394 (2001). 25.Lee, H. S., C. M. Kang, B. W. Kang and H. K. Kim, “Seasonal Variations of Acidic Air Pollutants in Seoul, South Korea,” Atmospheric Environment, Vol. 33, pp. 3143-3152 (1999). 26.Lin, Y. C., M. T. Cheng, W. Y. Ting and C. R. Yeh, “Characteristics of Gaseous HNO2, HNO3, NH3 and Particulate Ammonium Nitrate in an urban city of Central Taiwan” in press. 27.Matsumoto, M. and T. Okita, “Long Term Measurements of Atmospheric Gaseous and Aerosol Species Using an Annular Denuder System in Nara, Japan ” Atmospheric Environment, Vol. 32, pp. 1419 -1425 (1998). 28.Moussiopoulos, N., S. Papalexiou, G. Lammel and T. Arvanitis, “Simulation of Nitrous Acid Formation Taking into Account Heterogeneous Pathways: Application to the Milan Metropolitan Area,” Environmental Modelling & Software, Vol. 15, pp. 629-637 (2000). 29.Ohta, S. and T. Okita, “A Chemical Characterization of Atmospheric Aerosol in Sapporo,” Atmospheric Environment, Vol. 24A,NO.4, pp. 815-822 (1990). 30.Perrino, C. and M. Gherardi, “Optimization of the Coating Layer for the Measurement of Ammonia by Diffusion Denuders,” Atmospheric Environment, Vol. 33, pp. 1479-1487 (1999). 31.Reisinger, A. R., “Observations of HNO2 in the Polluted Winter Atmosphere Possible Heterogeneous Production on Aerosols,” Atmospheric Environment, Vol. 34, pp. 3865-3874 (2000). 32.Ren, X., H. Harder, M. Martinez, R. L. Lesher, A. Oliger, T. Shirley, J. Adams, J. B. Simpas and W. H. Brune, “HOx Concentrations and OH Reactivity Observations in New York City during PMTACS-NY2001,” Atmospheric Environment, Vol. 37, pp. 3627-3637 (2003). 33.Salvador, P., B. Artinano, D. G. Alonso, X. Querol and A. Alastuey, “Identification and Characterisation of Sources of PM10 in Madrid (Spain) by Statistical Methods,” Atmospheric Environment, Vol 38 pp. 435-447(2004). 34.Saliba, N. A., M. Mochida and B. J. Finlayson-Pitts, “Laboratory Studies of Sources HOHO in Polluted Urban Atmospheres,” Geophysical Research Letters, Vol. 27, pp. 3229-3232 (2000). 35.Seinfeld, J. H. and S. N. Pandis, “Atmospheric Chemistry and Physics from Air Pollution to Climate Change,” John Wily & Sons, Inc., New York. pp. 1303 (1998). 36.Sjodin, A., “Studles of the Dlurnal Varlation of Nitrous Acid in Urban Air,” Environmental Science & Technology, Vol. 22, pp. 1086-1089 (1988). 37.Sjodin, A. and M. Ferm, “Measurements of Nitrous Acid in an Urban Area,” Atmospheric Environment, Vol. 19, pp. 985-992 (1985). 38.Stelson, A. W. and J. H. Seinfeld, “Relative Humidity and Temperature Dependence of the Ammonium Nitrate Dissociation Constant,” Atmospheric Environment, Vol. 16, pp. 983-992 (1982). 39.Svensson, R., E. Ljungstrom and O. Lindqvist, “Kinetics of the Reaction between Nitrogen Dioxide and Water Vapour,” Atmospheric Environment, Vol. 21, pp. 1529-1539 (1987). 40.Tsai, C. J. and S. N. Perng, “Artifacts of Ionic Species for Hi-Vol PM10 and PM10 Dichotomous Sampler.” Atmospheric Environment, Vol. 32, pp. 1605-1613(1998). 41.Walker, J. T., D. R. Whitall, W. Robarge and H. W. Paerl, “Ambient Ammonia and Ammonium Aerosol Across a Region of Variable Ammonia Emission Density ” Atmospheric Environment, Vol. 38, pp. 1235-1246 (2004). 42.Yao, X., C. K. Chan, M. Fang S. Cadle, T. Chan, P. Mulawa, K. He, and B. Ye, ”The Water-Soluble Ionic Composition of PM2.5 in Shanghai and Beijing, China” Atmospheric Environment, Vol. 36, pp. 4223-4234 (2002). 43.丁偉諭,「台中都會區酸性氣體空氣污染物之季節性變化」,碩士論文,國立中興大學環境工程研究所,台中(2003)。 44.李崇德,許文昌,林能暉,「台中地區氣膠微粒化學組成及其污染來源推估」,第三屆氣膠科技國際研討會論文專輯,台北,第111-118頁(1995)。 45.林暐翔,「大氣中氨氣及銨鹽微粒的量測及特性分析」,碩士論文,國立中興大學環境工程研究所,台中(2005)。 46.徐玉眉,「無機氣膠熱力學平衡模式之建立」,博士論文,國立成功大學環境工程學系,台南(2002)。 47.徐玉眉,劉遵賢,鄭福田,「大氣中氣態亞硝酸與硝酸之觀測研究」,第十七屆空氣污染控制技術研討會論文集,雲林(2000)。 48.程萬里,「中部地區懸浮微粒相關之氣象條件分析」,行政院國家科學委員會研究報告(2000)。 49.蔡德明,吳義林,「南高屏地區懸浮微粒中水溶性離子平衡之季節性變化」,第八屆氣膠科技國際研討會論文專輯,第14-19頁,新竹(2000)。 50.蔡瀛逸,鄭曼婷,「高污染狀態下大氣二次氣膠組成之探討」,第十五屆空氣污染控制技術研討會論文集,第711-718頁,高雄(1998)。 51.文恒毅,「以環形擴散採樣器採集大氣中之硝酸、亞硝酸、二氧化硫與氨氣濃度之採樣誤差探討」,碩士論文,國立交通大學環境工程研究所,新竹(1997)。
台中都會區HNO2濃度範圍0.1 - 7.8 ppb,平均最大濃度發生於夜間,研究發現HNO2與NO2有高度相關性(R=0.75),另外,HNO2/NO2比值與PM2.5質量濃度,兩者相關係數(R)為0.62,可知NO2與氣膠表面在異相反應為重要反應物。推估HNO2反應機制各百分比得知,日間主要為同相及NO2被氣膠還原成HNO2的異相反應,其百分比分別為85%、15%;夜間則以NO2與氣膠反應為主,百分比為99%,顯示HNO2生成來源不可忽略異相機制,更可確認異相形成機制也是HNO2重要生成來源。台中都會區NO2轉換HNO2的生成速率為0.90 - 2.63 %h-1,其日間主要影響因子為溫度及NO2,夜間則為NO2。

This study was to investigate concentration changes and conversion ratio onto HNO2 in National Chung Hsing University, Taichung city, during August 2005 to January 2006 using Versatile Air Pollutant Sampler(VPS). Furthermore, seasonal variations of ambient gaseous pollutants and PM2.5 were also conducted in this investigation.
HNO2 concentrations was in a range of 0.1 to 7.8 ppb, and the highest values normally occurred during the night time. HNO2 was found to be highly correlated with NO2 (R=0.75), and the ratio of HNO2/NO2 was also highly correlated with PM2.5 (R=0.62). These findings revealed that NO2 and aerosol surface both were key reactants in heterogeneous formation. Estimating each percentage within HNO2 formation mechanisms, homogeneous and NO2-reduced aerosol were main reactions, which were 85 and 15 % in the daytime. However, NO2-reduced aerosol is the main reactions in the nighttime, which is 99 % in HNO2 formation. These results showed that heterogeneous mechanisms could not be neglected. As a result, heterogeneous reaction could be concluded as an important mechanism for HNO2 formation. HNO2 conversion ratio was estimated to be 0.90 to 2.63 %h-1. Furthermore, temperature and NO2 were major affecting factors in the daytime, meanwhile, only NO2 was the influential factor at night.
For charactering the seasonal variations of various pollutants in Taichung urban area, concentrations of HNO2、HNO3、PM2.5 and NO3- showed significant trends with seasons. However, this phenomena was not observed in SO2、NH3、SO42- and NH4+. The annual mean concentrations of HNO2、HNO3、SO2、NH3、PM2.5、NO3-、SO42- and NH4+ were 2.9、1.9、4.8、8.0、44.5、6.3、4.8 and 4.0 ugm-3, respectively. Concentrations of HNO2、PM2.5、SO42-、NO3- and NH4+ in winter time exhibited higher values than that in summer time, instead, concentration of HNO3 has a opposite result. Moreover, in spite of a 1.6 times SO42- concentration was found in 2005 than in 2002, the concentrations of other pollutant were roughly similar between these two years.
其他識別: U0005-0706200614572000
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.