Please use this identifier to cite or link to this item:
標題: 利用渦流協變性系統量測都會區紊流熱通量之研究
Turbulent Heat Flux Measurements Using Eddy Covariance System in an Urban Area
作者: 余思穎
Yu, Ssu-Ying
關鍵字: eddy covariance system;渦流協變性系統;closure gaps;coordinate rotation;albedo;CO2 flux;能量缺口;座標旋轉;反照率;二氧化碳通量
出版社: 環境工程學系所
引用: Arya, S.P., “Introduction to Micrometeorology,” Academic Press, 420pp (2001). Aubinet, M., A. Grelle, A. Ibrom, Ü. Rannik, J. Moncrieff, T. Foken, A.S. Kowalski, P.H. Martin, P. Berbigier, Ch. Bernhofer, R. Clement, J. Elbers, A. Granier, T. Grünwald, K. Morgenstern, K. Pilegaard, C. Rebmann, W. Snijders, R. Valentini, and T. Vesala, “Estimates of the annual net carbon and water exchange of forests:the EUROFLUX methodology,” Advances in Ecological Research, vol. 30, pp. 114-175 (2000). Baldocchi, D., E. Falge, L. Gu, R. Olson, D. Hollinger, S. Running, P. Anthoni, Ch. Bernhofer, K. Davis, R. Evans, J. Fuentes, A. Goldstein, G. Katul, B. Law, X. Lee, Y. Malhi, T. Meyers, W. Munger, W. Oechel, K.T. Paw U, K. Pilegaard, H.P. Schmid, R. Valentini, S. Verma, T. Vesala, K. Wilson, and S. Wofsyn, ”FLUXNET:a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities,” Bulletin of the American Meteorological Society, vol. 82, pp. 2415-2434 (2001). Beverland, I.J., D.H. Oneill, S.L. Scott, and J.B. Moncrieff, ”Design, construction and operation of flux measurement system using the conditional sampling technique,“ Atmospheric Environment, vol. 30, pp. 3209-3220 (1996). Blanken, P.D., T.A. Black, H.H. Neumann, G.D. Hartog, P.C. Yang, Z. Nesic, R. Staebler, W. Chen, and M.D. Novak, “Turbulent flux measurements above and below the overstory of a boreal aspen forest,” Boundary-Layer Meteorology, vol. 89, pp. 109-140 (1998). Bowen, I.S., “The ratio of heat losses by conduction and by evaporation from any water surface:Physical Review,” vol. 27, pp. 779-787 (1926). Bowling, D.R., A.A. Turnipseed, A.C. Delany, D.D., Baldocchi, J.P. Greenberg, and R.K. Monson, ”The use of relaxed eddy accumulation to measure biosphere-atmosphere exchange of isoprene and other biological trace gases,” Oecologia, vol. 116, pp. 306-315 (1998). Brotzge, J.A., and K.C. Crawford, “Examination of the Surface Energy Budget:A Comparison of Eddy Correlation and Bowen Ratio Measurement Systems,” Journal of Hydrometeorology, vol. 4, pp. 160-178 (2003). Brutsaert, W.H., “Evaporation into the Atmosphere,” Kluwer Academic Publishers, 229pp (1991). Businger, J.A. and S.P. Oncley, ”Flux measurement with conditional sampling,” Journal of Atmospheric and Oceanic Technology, vol. 7, pp. 349-352 (1990). Christen, A., and R. Vogt, “Energy and radiation balance of a central European city,” International Journal of Climatology, vol. 24, pp. 1395-1421 (2004). Fleagle, R.G., and J.A. Businger, “An Introduction to Atmospheric Physics,” Academic Press, Inc., New York (1980). Garratt, J.R., “The atmospheric boundary layer,” Cambridge university press, pp. 15-39 (1992). Gash, J.H.C., “A note on estimating the effect of limited fetch on micrometeorological evaporation measurements,” Boundary-Layer Meteorology, vol. 35, pp. 409-413 (1986). Grelle, A., and A. Lindroth, “Eddy-correlation system for long-term monitoring of fluxes of heat, water vapor and CO2,” Global Change Biol., vol. 2, pp. 297-307 (1996). Grimmond C.S.B., and T.R. Oke, “Comparison of heat fluxes grom summertime observation in the suburbs of four North American cities,” Journal of applied Meteorology, vol. 34, pp. 873-889 (1995). Grimmond C.S.B., and T.R. Oke, “Turbulent heat fluxes in urban area:Observation and a local-scale urban meteorological parameterization scheme (LUMPS),” Journal of applied Meteorology, vol. 41, pp. 792-810 (2002). Gu, J., E.A. Smith, and J.D. Merritt, “Testing energy balance closure with GOES-retrieved net radiation and in situ measured eddy correlation fluxes in BOREAS,” Journal of Geophysical Research, vol. 104, pp. 27881-27893 (1999). Hillel, D., “Introduction to Soil Physics,” Academic, San Diego, Calif., 364pp (1982). Horst, T.W., and J.C. Weil, “Footprint estimation for scalar flux measurements in the atmospheric surface layer,” Boundary-Layer Meteorology, vol. 59, pp. 279-296 (1992). Horst, T.W., “The footprint for estimation of atmospheric-surface exchange fluxes by profile techniques,” Boundary-Layer Meteorology, vol. 90, pp. 171-188 (1999). Jauregui, E., M.C. Moreno, and A. Tejeda, “The energy-balance of central Barcelona,” American Meteorological Society, Boston, MA (2002). Kaimal, J.C., and J.A. Businger, “A Continuous Wave Sonic Anemometer-Thermometer,” J. Applied Meteorol., vol. 2, pp. 156-164 (1963). Kaimal, J.C., and J.E. Gaynor, “Another Look at Sonic Thermometry,” Boundary-Layer Meteorol., vol. 56, pp. 401-410 (1991). Kaimal, J.C., and J.J. Finnigan, “Atmospheric boundary layer flows:Their structure and measurement,” Oxford university press, 289pp (1994). Kusuma, G.R., “Sensible heat fluxes during the active and break phases of the southwest monsoon over the Indian region,” Boundary-Layer Meteorology, vol. 36, pp. 283-294 (1986). Lee, X., “On micrometeorological observations of surface-air exchange over tall vegetation,” Agricultural and Forest Meteorology, vol. 91, pp. 39-49 (1998). Lee, X., Q. Yu, X. Sun, J. Liu, Q. Min, Y. Liu, and X. Zhang, “Micrometeorological fluxes under the influence of regional and local advection:a revisit,” Agricultural and Forest Meteorology, vol. 122, pp. 111-124 (2004). Liu, Y., C.P. Weaver, and R. Avissar, “Toward a parameterization of mesoscale fluxes and moist convection induced by landscape heterogeneity,” Journal of Geophysical Research, vol. 104, pp. 19515-19533 (1999). Mahrt, L., “Flux sampling errors for aircraft and towers,” Journal of Atmospheric and Oceanic Technology, vol. 15, pp. 416-429 (1998). McMillen, R.T., “An eddy correlation technique with extended applicability to non-simple terrain,” Boundary-Layer Meteorology, vol. 43, pp. 231-245 (1988). Meek, D.W., and J.H. Prueger, “Solutions for three regression problems commonly found in meteorological data analysis,” American Meteorological Society, pp. 141-145 (1998). Monin, A.S., and A.M. Obukhov, “Basic laws of turbulent mixing in the atmosphere near thr ground,” Akad. Nauk. SSR., Geophiz Inst., vol. 24, pp. 163-187 (1954). Msssman, W.J., and X. Lee, “Eddy covariance flux correction and uncertainties in long-term stydies of carbon and energy exchanges,” Agricultural and Forest Meteorology, vol. 113, pp. 121-144 (2002). Oke, T.R., “The urban energy balance,” Progress in Physical Geography, vol. 12, pp. 471-508 (1988). Oke, T.R., R.A. Spronken-Smith, E. Jauregui, and C.S.B. Grimmond, “The energy-balance of central Mexico City during the Dry season,” Atmos. Environ., vol. 33, pp. 3919-3930 (1999). Paltridge, G.W., and C.M.R. Platt, “Radiative processes in meteorology and climatology,” Elsevier Sci., New York (1976). Reynolds, O., “On the dynamical theory of incompressible viscous fluids and the determination of the criterion,” Philosophical Transactions of the Royal Society of London. A, vol. 186, pp. 123-164 (1895). Richards, J.M., “A simple expression for the saturation vapour pressure of water in the range -50 to 140 °C,” J. Phys. D: Appl. Phys., vol. 4, pp. L15-18 (1971). Rinne, J., “Application and development of surface layer flux techniques for measurements of volatile organic compound emissions from vegetation,” Finnish Meteorological Institute, Helsinki (2001). Schotanus, P., F.T.M. Nieuwstadt, and H.A.R. de Bruin, “Temperature Measurement with a Sonic Anemometer and its Application to Heat and Moisture Fluxes,” Boundary-Layer Meteorol., vol. 26, pp. 81-93 (1983). Sivaramakrishnan S., S. Sangeetha, and K.G. Vernekar, “Characteristics of turbulent fluxes of sensible heat and momentum in the surface boundary layer during the Indian summer monsoon,” Boundary Layer Meteorology, vol. 60, pp. 95-108 (1992). Stull, R.B., “An Introduction to Boundary Layer Meteorology,” Kluwer Academic Publishers, 666pp (1988). Sutton, O.G., “Micrometeorology,” McGraw-Hill, New York, 333pp (1953). Swinbank, W.C., “The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere,” Journal of the Atmospheric Sciences, vol. 8, pp. 135-145 (1951). Tsai, J.L., and B.J. Tsuang, “Aerodynamic roughness over an urban area and over two farmlands in a populated area as determined by wind profiles and surface energy flux measurements,” Agricultural and Forest Meteorology, vol. 132, pp. 154-170 (2005). Tsuang, B.J., “Analytical asymptotic solution to determine interactions between the planetary layer and the Earth’s surface,” Journal of Geophysical Research, vol. 108, no. D16, 8608 (2003). Tsuang, B.J., J.L. Tsai, M.D. Lin, and C.L. Chen, “Determining aerodynamic roughness using tethersonde and heat flux measurements in an urban area over a complex terrain,” Atmospheric Environment, vol. 37, pp. 1993-2003 (2003). Twine, T.E., W.P. Kustas, J.M. Norman, D.R. Cook, P.R. Houser, T.P. Meyers, J.H. Prueger, P.J. Starks, and M.L. Wesely, “Correcting eddy-covariance flux underestimates over a grassland,” Agricultural and Forest Meteorology, vol. 103, pp. 279-300 (2000). Villalobos, F.J., ”Correction of covariance water vapor flux using additional measurements of temperature,” Agricultural and Forest Meteorology, vol. 88, pp. 77-83 (1997). Wallace, J.M., and P.V. Hobbs, “Atmospheric Science an Introductory Survey,” Academic Press, Inc., New York (1977). Webb, E.K., G.I. Pearman, and R. Leuning, “Correction of flux measurements for density effects due to heat and water vapor transfer,” Quart. J. R. Met. Soc., vol. 106, pp. 67-90 (1980). Weber, S., and W. Kuttler, “Surface energy balance characteristics of a heterogeneous urban ballast facet,” Climate Research, vol. 28, pp. 257-266 (2005). Wilczak, J.M., S.P. Oncley, and S.A. Stage, “Sonic anemometer tilt correction algorithms,” Boundary-Layer Meteorology, vol. 99, pp. 127-150 (2001). Wilson, K.B., A. Goldstein, E. Falge, M. Aubinet, D. Baldocchi, P. Berbigier, C. Bernhofer, R. Ceulemans, H. Dolman, C. Field, A. Grelle, A. Ibrom, B.E. Law, A. Kowalski, T. Meyers, J. Moncrieff, R. Monson, W. Oechel, J. Tenhunen, R. Valentini, and S. Verma, “Energy balance closure at FLUXNET sites,” Agricultural and Forest Meteorology, vol. 113, pp. 223-243 (2002). Zhang, S., C. Qiu, and W. Zhang, “Estimating heat fluxes by merging profile formulae and the energy budget with a variational technique,” Advances in Atmospheric Science, vol. 21, pp. 627-636 (2004). 蔡徵霖、莊秉潔,「以垂直剖面氣象場及輻射資料計算地表粗糙度之研究」,碩士論文,國立中興大學環境工程研究所,台中 (2001)。 盧伯勝、莊秉潔,「渦流協變性系統量測紊流熱通量之研究」,碩士論文,國立中興大學環境工程研究所,台中 (2005)。 朱佳仁,「環境流體力學」,(2003)。
本研究目的為利用渦流協變性系統量測大氣地表層內都會區之紊流熱通量,以了解都會區之大氣地表層能量收支行為。本實驗在台中市中興大學的土木環工大樓 (24°12´N, 120°67´E) 進行觀測,觀測高度為50公尺,為時近四個月實驗(2006/2/11~2006/6/1) 之連續監測,量測蒸發潛熱通量與可感熱通量之紊流熱通量,並搭配地面之氣象低速反應系統,觀測都會區大氣能量平衡行為。
實驗期間未經校正之原始能量缺口為28.05 %。校正項可以縮小能量缺口,其中校正項包括二維及三維座標旋轉、WPL修正項、都會區平均反照率、平流項及長波輻射冷卻損失量之修正,再重新計算能量平衡,而測量推估出距實驗場址半徑1.4公里內之都會區平均反照率為0.202,則能量與經二維座標旋轉校正後,能量缺口縮小至4.08 %,為最佳校正之結果;而與三維校正後之能量缺口為5.68 %。兩者均有有很大幅度的改善,結果更接近真實能量平衡。
在二氧化碳通量方面,可以發現一天變化的高峰時段出現在上午八時及下午六時,一週高峰則出現在星期一及星期五,與人類活動有密切相關,並且主要受東側 (國光路) 風向所影響,交通源對二氧化碳通量影響占很大因素。

This study is to measure urban surface heat fluxes, especially emphasizing on turbulent heat flux in the atmospheric surface layer using eddy covariance system. The turbulent heat fluxes were measured at 50 m height above ground level on a tower standing on the roof of the Civil and Environmental Building (2412'' N, 12067''E) in National Chung-Hsing University, Taichung, Taiwan, for almost four months (2006/2/11~ 2006/6/1).
It is found the surface energy budget was imbalanced, the turbulent heat flux was 28.05 % lower than the available surface heat flux during the study period. Corrections are made to reduce the energy gap, including coordinate system rotation, WPL correction, urban albedo correction, advected term correction, and long-wave radiational cooling term correction. After all the above corrections, the energy closure gap is reduced to 4.08 % using two-axis rotation correction, and to 5.68 % using three-axis rotation correction. That is, the result of the two-axis rotational correction is close to the true energy balance. The average urban albedo is determined to be 0.202 estimated within the radius of 1.4 km from the tower site.
The peaks of the diurnal CO2 flux were observed at 8 AM and 6 PM, and the peaks of weekly CO2 flux were observed on Monday and Friday. In addition, flux from the east was higher than other wind direction. Therefore, it is suggested that the CO2 flux was mainly from the nearby traffic source, Kuo-Kuang Road.
其他識別: U0005-1107200615415900
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.